Mister Exam

Integral of x-7 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  (x - 7) dx
 |            
/             
0             
01(x7)dx\int\limits_{0}^{1} \left(x - 7\right)\, dx
Integral(x - 7, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      (7)dx=7x\int \left(-7\right)\, dx = - 7 x

    The result is: x227x\frac{x^{2}}{2} - 7 x

  2. Now simplify:

    x(x14)2\frac{x \left(x - 14\right)}{2}

  3. Add the constant of integration:

    x(x14)2+constant\frac{x \left(x - 14\right)}{2}+ \mathrm{constant}


The answer is:

x(x14)2+constant\frac{x \left(x - 14\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  2      
 |                  x       
 | (x - 7) dx = C + -- - 7*x
 |                  2       
/                           
(x7)dx=C+x227x\int \left(x - 7\right)\, dx = C + \frac{x^{2}}{2} - 7 x
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
-13/2
132- \frac{13}{2}
=
=
-13/2
132- \frac{13}{2}
-13/2
Numerical answer [src]
-6.5
-6.5
The graph
Integral of x-7 dx

    Use the examples entering the upper and lower limits of integration.