Mister Exam

Other calculators

Integral of (x-pi/4)*sin(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
 --                     
 4                      
  /                     
 |                      
 |  /    pi\            
 |  |x - --|*sin(2*x) dx
 |  \    4 /            
 |                      
/                       
0                       
0π4(xπ4)sin(2x)dx\int\limits_{0}^{\frac{\pi}{4}} \left(x - \frac{\pi}{4}\right) \sin{\left(2 x \right)}\, dx
Integral((x - pi/4)*sin(2*x), (x, 0, pi/4))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (xπ4)sin(2x)=xsin(2x)πsin(2x)4\left(x - \frac{\pi}{4}\right) \sin{\left(2 x \right)} = x \sin{\left(2 x \right)} - \frac{\pi \sin{\left(2 x \right)}}{4}

    2. Integrate term-by-term:

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(2x)\operatorname{dv}{\left(x \right)} = \sin{\left(2 x \right)}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

            Now substitute uu back in:

            cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

          Method #2

          1. The integral of a constant times a function is the constant times the integral of the function:

            2sin(x)cos(x)dx=2sin(x)cos(x)dx\int 2 \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              (u)du\int \left(- u\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                udu=udu\int u\, du = - \int u\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  udu=u22\int u\, du = \frac{u^{2}}{2}

                So, the result is: u22- \frac{u^{2}}{2}

              Now substitute uu back in:

              cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

            So, the result is: cos2(x)- \cos^{2}{\left(x \right)}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (πsin(2x)4)dx=πsin(2x)dx4\int \left(- \frac{\pi \sin{\left(2 x \right)}}{4}\right)\, dx = - \frac{\pi \int \sin{\left(2 x \right)}\, dx}{4}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

          Now substitute uu back in:

          cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

        So, the result is: πcos(2x)8\frac{\pi \cos{\left(2 x \right)}}{8}

      The result is: xcos(2x)2+sin(2x)4+πcos(2x)8- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\pi \cos{\left(2 x \right)}}{8}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=xπ4u{\left(x \right)} = x - \frac{\pi}{4} and let dv(x)=sin(2x)\operatorname{dv}{\left(x \right)} = \sin{\left(2 x \right)}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

        Now substitute uu back in:

        cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

        Now substitute uu back in:

        sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

      So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

    Method #3

    1. Rewrite the integrand:

      (xπ4)sin(2x)=xsin(2x)πsin(2x)4\left(x - \frac{\pi}{4}\right) \sin{\left(2 x \right)} = x \sin{\left(2 x \right)} - \frac{\pi \sin{\left(2 x \right)}}{4}

    2. Integrate term-by-term:

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(2x)\operatorname{dv}{\left(x \right)} = \sin{\left(2 x \right)}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

          Now substitute uu back in:

          cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (πsin(2x)4)dx=πsin(2x)dx4\int \left(- \frac{\pi \sin{\left(2 x \right)}}{4}\right)\, dx = - \frac{\pi \int \sin{\left(2 x \right)}\, dx}{4}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

          Now substitute uu back in:

          cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

        So, the result is: πcos(2x)8\frac{\pi \cos{\left(2 x \right)}}{8}

      The result is: xcos(2x)2+sin(2x)4+πcos(2x)8- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\pi \cos{\left(2 x \right)}}{8}

    Method #4

    1. The integral of a constant times a function is the constant times the integral of the function:

      2(xπ4)sin(x)cos(x)dx=2(xπ4)sin(x)cos(x)dx\int 2 \left(x - \frac{\pi}{4}\right) \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int \left(x - \frac{\pi}{4}\right) \sin{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Rewrite the integrand:

        (xπ4)sin(x)cos(x)=xsin(x)cos(x)πsin(x)cos(x)4\left(x - \frac{\pi}{4}\right) \sin{\left(x \right)} \cos{\left(x \right)} = x \sin{\left(x \right)} \cos{\left(x \right)} - \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{4}

      2. Integrate term-by-term:

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x)cos(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(2x)2dx=sin(2x)dx2\int \frac{\sin{\left(2 x \right)}}{2}\, dx = \frac{\int \sin{\left(2 x \right)}\, dx}{2}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

                1. The integral of sine is negative cosine:

                  sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

                So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

              Now substitute uu back in:

              cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

            So, the result is: cos(2x)4- \frac{\cos{\left(2 x \right)}}{4}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          (cos(2x)4)dx=cos(2x)dx4\int \left(- \frac{\cos{\left(2 x \right)}}{4}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{4}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)8- \frac{\sin{\left(2 x \right)}}{8}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (πsin(x)cos(x)4)dx=πsin(x)cos(x)dx4\int \left(- \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{4}\right)\, dx = - \frac{\pi \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx}{4}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            (u)du\int \left(- u\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              udu=udu\int u\, du = - \int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: u22- \frac{u^{2}}{2}

            Now substitute uu back in:

            cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

          So, the result is: πcos2(x)8\frac{\pi \cos^{2}{\left(x \right)}}{8}

        The result is: xcos(2x)4+sin(2x)8+πcos2(x)8- \frac{x \cos{\left(2 x \right)}}{4} + \frac{\sin{\left(2 x \right)}}{8} + \frac{\pi \cos^{2}{\left(x \right)}}{8}

      So, the result is: xcos(2x)2+sin(2x)4+πcos2(x)4- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\pi \cos^{2}{\left(x \right)}}{4}

  2. Add the constant of integration:

    xcos(2x)2+sin(2x)4+πcos(2x)8+constant- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\pi \cos{\left(2 x \right)}}{8}+ \mathrm{constant}


The answer is:

xcos(2x)2+sin(2x)4+πcos(2x)8+constant- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\pi \cos{\left(2 x \right)}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                              
 |                                                               
 | /    pi\                   sin(2*x)   x*cos(2*x)   pi*cos(2*x)
 | |x - --|*sin(2*x) dx = C + -------- - ---------- + -----------
 | \    4 /                      4           2             8     
 |                                                               
/                                                                
(xπ4)sin(2x)dx=Cxcos(2x)2+sin(2x)4+πcos(2x)8\int \left(x - \frac{\pi}{4}\right) \sin{\left(2 x \right)}\, dx = C - \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\pi \cos{\left(2 x \right)}}{8}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.5-0.5
The answer [src]
1   pi
- - --
4   8 
14π8\frac{1}{4} - \frac{\pi}{8}
=
=
1   pi
- - --
4   8 
14π8\frac{1}{4} - \frac{\pi}{8}
1/4 - pi/8
Numerical answer [src]
-0.142699081698724
-0.142699081698724

    Use the examples entering the upper and lower limits of integration.