1 / | | (x - 1)*cos(n*x) dx | / 0
Integral((x - 1)*cos(n*x), (x, 0, 1))
// 2 \
|| x |
|| -- for n = 0|
|| 2 |
/ // x for n = 0\ || | // x for n = 0\
| || | ||/-cos(n*x) | || |
| (x - 1)*cos(n*x) dx = C - |
/ 1 cos(n) |- -- + ------ for And(n > -oo, n < oo, n != 0) | 2 2 < n n | | -1/2 otherwise \
=
/ 1 cos(n) |- -- + ------ for And(n > -oo, n < oo, n != 0) | 2 2 < n n | | -1/2 otherwise \
Piecewise((-1/n^2 + cos(n)/n^2, (n > -oo)∧(n < oo)∧(Ne(n, 0))), (-1/2, True))
Use the examples entering the upper and lower limits of integration.