Mister Exam

Integral of (x-1)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  (x - 1)*1 dx
 |              
/               
0               
$$\int\limits_{0}^{1} \left(x - 1\right) 1\, dx$$
Integral((x - 1*1)*1, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          2
 |                    (x - 1) 
 | (x - 1)*1 dx = C + --------
 |                       2    
/                             
$${{x^2}\over{2}}-x$$
The graph
The answer [src]
-1/2
$$-{{1}\over{2}}$$
=
=
-1/2
$$- \frac{1}{2}$$
Numerical answer [src]
-0.5
-0.5
The graph
Integral of (x-1)dx dx

    Use the examples entering the upper and lower limits of integration.