1 / | | x - 1 | ------------ dx | 2 | x + 2*x + 3 | / 0
Integral((x - 1)/(x^2 + 2*x + 3), (x, 0, 1))
/ | | x - 1 | ------------ dx | 2 | x + 2*x + 3 | /
/ 2*x + 2 \ |------------| /-2 \ | 2 | |---| x - 1 \x + 2*x + 3/ \ 2 / ------------ = -------------- + ------------------------ 2 2 2 x + 2*x + 3 / ___ ___\ |-\/ 2 \/ 2 | |-------*x - -----| + 1 \ 2 2 /
/ | | x - 1 | ------------ dx | 2 = | x + 2*x + 3 | /
/ | | 2*x + 2 | ------------ dx | 2 | x + 2*x + 3 / | | / | 1 ------------------ - | ------------------------ dx 2 | 2 | / ___ ___\ | |-\/ 2 \/ 2 | | |-------*x - -----| + 1 | \ 2 2 / | /
/ | | 2*x + 2 | ------------ dx | 2 | x + 2*x + 3 | / ------------------ 2
2 u = x + 2*x
/ | | 1 | ----- du | 3 + u | / log(3 + u) ----------- = ---------- 2 2
/ | | 2*x + 2 | ------------ dx | 2 | x + 2*x + 3 | / 2 \ / log\3 + x + 2*x/ ------------------ = ----------------- 2 2
/ | | 1 - | ------------------------ dx | 2 | / ___ ___\ | |-\/ 2 \/ 2 | | |-------*x - -----| + 1 | \ 2 2 / | /
___ ___ \/ 2 x*\/ 2 v = - ----- - ------- 2 2
/ | | 1 - | ------ dv = -atan(v) | 2 | 1 + v | /
/ | / ___ ___\ | 1 ___ |\/ 2 x*\/ 2 | - | ------------------------ dx = -\/ 2 *atan|----- + -------| | 2 \ 2 2 / | / ___ ___\ | |-\/ 2 \/ 2 | | |-------*x - -----| + 1 | \ 2 2 / | /
/ 2 \ / ___ ___\ log\3 + x + 2*x/ ___ |\/ 2 x*\/ 2 | C + ----------------- - \/ 2 *atan|----- + -------| 2 \ 2 2 /
/ | / 2 \ / ___ \ | x - 1 log\3 + x + 2*x/ ___ |\/ 2 *(1 + x)| | ------------ dx = C + ----------------- - \/ 2 *atan|-------------| | 2 2 \ 2 / | x + 2*x + 3 | /
/ ___\ log(6) log(3) ___ |\/ 2 | ___ / ___\ ------ - ------ + \/ 2 *atan|-----| - \/ 2 *atan\\/ 2 / 2 2 \ 2 /
=
/ ___\ log(6) log(3) ___ |\/ 2 | ___ / ___\ ------ - ------ + \/ 2 *atan|-----| - \/ 2 *atan\\/ 2 / 2 2 \ 2 /
log(6)/2 - log(3)/2 + sqrt(2)*atan(sqrt(2)/2) - sqrt(2)*atan(sqrt(2))
Use the examples entering the upper and lower limits of integration.