Mister Exam

Other calculators

Integral of (x-1)/(x^2-9) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  x - 1    
 |  ------ dx
 |   2       
 |  x  - 9   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x - 1}{x^{2} - 9}\, dx$$
Integral((x - 1)/(x^2 - 9), (x, 0, 1))
The answer (Indefinite) [src]
  /                                          
 |                                           
 | x - 1           log(-3 + x)   2*log(3 + x)
 | ------ dx = C + ----------- + ------------
 |  2                   3             3      
 | x  - 9                                    
 |                                           
/                                            
$$\int \frac{x - 1}{x^{2} - 9}\, dx = C + \frac{\log{\left(x - 3 \right)}}{3} + \frac{2 \log{\left(x + 3 \right)}}{3}$$
The graph
The answer [src]
          log(2)   2*log(4)
-log(3) + ------ + --------
            3         3    
$$- \log{\left(3 \right)} + \frac{\log{\left(2 \right)}}{3} + \frac{2 \log{\left(4 \right)}}{3}$$
=
=
          log(2)   2*log(4)
-log(3) + ------ + --------
            3         3    
$$- \log{\left(3 \right)} + \frac{\log{\left(2 \right)}}{3} + \frac{2 \log{\left(4 \right)}}{3}$$
-log(3) + log(2)/3 + 2*log(4)/3
Numerical answer [src]
0.0566330122651325
0.0566330122651325

    Use the examples entering the upper and lower limits of integration.