1 / | | x - 1 | ------------ dx | 2 | x - 4*x + 5 | / 0
Integral((x - 1*1)/(x^2 - 4*x + 5), (x, 0, 1))
/ | | x - 1 | 1*------------ dx | 2 | x - 4*x + 5 | /
/ 1*2*x - 4 \
|--------------|
| 2 |
x - 1 \1*x - 4*x + 5/ 1
------------ = ---------------- + -----------------
2 2 / 2 \
x - 4*x + 5 1*\(-x + 2) + 1// | | x - 1 | 1*------------ dx | 2 = | x - 4*x + 5 | /
/
|
| 1*2*x - 4
| -------------- dx
| 2
| 1*x - 4*x + 5 /
| |
/ | 1
-------------------- + | ------------- dx
2 | 2
| (-x + 2) + 1
|
/ /
|
| 1*2*x - 4
| -------------- dx
| 2
| 1*x - 4*x + 5
|
/
--------------------
2 2 u = x - 4*x
/
|
| 1
| ----- du
| 5 + u
|
/ log(5 + u)
----------- = ----------
2 2 /
|
| 1*2*x - 4
| -------------- dx
| 2
| 1*x - 4*x + 5
| / 2 \
/ log\5 + x - 4*x/
-------------------- = -----------------
2 2 / | | 1 | ------------- dx | 2 | (-x + 2) + 1 | /
v = 2 - x
/ | | 1 | ------ dv = atan(v) | 2 | 1 + v | /
/ | | 1 | ------------- dx = atan(-2 + x) | 2 | (-x + 2) + 1 | /
/ 2 \
log\5 + x - 4*x/
C + ----------------- + atan(-2 + x)
2 / | / 2 \ | x - 1 log\5 + x - 4*x/ | ------------ dx = C + ----------------- + atan(-2 + x) | 2 2 | x - 4*x + 5 | /
log(2) log(5) pi ------ - ------ - -- + atan(2) 2 2 4
=
log(2) log(5) pi ------ - ------ - -- + atan(2) 2 2 4
Use the examples entering the upper and lower limits of integration.