1 / | | x - 1 | ------------ dx | 2 | x - 4*x + 5 | / 0
Integral((x - 1*1)/(x^2 - 4*x + 5), (x, 0, 1))
/ | | x - 1 | 1*------------ dx | 2 | x - 4*x + 5 | /
/ 1*2*x - 4 \ |--------------| | 2 | x - 1 \1*x - 4*x + 5/ 1 ------------ = ---------------- + ----------------- 2 2 / 2 \ x - 4*x + 5 1*\(-x + 2) + 1/
/ | | x - 1 | 1*------------ dx | 2 = | x - 4*x + 5 | /
/ | | 1*2*x - 4 | -------------- dx | 2 | 1*x - 4*x + 5 / | | / | 1 -------------------- + | ------------- dx 2 | 2 | (-x + 2) + 1 | /
/ | | 1*2*x - 4 | -------------- dx | 2 | 1*x - 4*x + 5 | / -------------------- 2
2 u = x - 4*x
/ | | 1 | ----- du | 5 + u | / log(5 + u) ----------- = ---------- 2 2
/ | | 1*2*x - 4 | -------------- dx | 2 | 1*x - 4*x + 5 | / 2 \ / log\5 + x - 4*x/ -------------------- = ----------------- 2 2
/ | | 1 | ------------- dx | 2 | (-x + 2) + 1 | /
v = 2 - x
/ | | 1 | ------ dv = atan(v) | 2 | 1 + v | /
/ | | 1 | ------------- dx = atan(-2 + x) | 2 | (-x + 2) + 1 | /
/ 2 \ log\5 + x - 4*x/ C + ----------------- + atan(-2 + x) 2
/ | / 2 \ | x - 1 log\5 + x - 4*x/ | ------------ dx = C + ----------------- + atan(-2 + x) | 2 2 | x - 4*x + 5 | /
log(2) log(5) pi ------ - ------ - -- + atan(2) 2 2 4
=
log(2) log(5) pi ------ - ------ - -- + atan(2) 2 2 4
Use the examples entering the upper and lower limits of integration.