Mister Exam

Other calculators


(x-1)/(x^2-4x+5)

Integral of (x-1)/(x^2-4x+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     x - 1       
 |  ------------ dx
 |   2             
 |  x  - 4*x + 5   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x - 1}{x^{2} - 4 x + 5}\, dx$$
Integral((x - 1*1)/(x^2 - 4*x + 5), (x, 0, 1))
Detail solution
We have the integral:
  /                 
 |                  
 |      x - 1       
 | 1*------------ dx
 |    2             
 |   x  - 4*x + 5   
 |                  
/                   
Rewrite the integrand
               /  1*2*x - 4   \                    
               |--------------|                    
               |   2          |                    
   x - 1       \1*x  - 4*x + 5/           1        
------------ = ---------------- + -----------------
 2                    2             /        2    \
x  - 4*x + 5                      1*\(-x + 2)  + 1/
or
  /                   
 |                    
 |      x - 1         
 | 1*------------ dx  
 |    2              =
 |   x  - 4*x + 5     
 |                    
/                     
  
  /                                       
 |                                        
 |   1*2*x - 4                            
 | -------------- dx                      
 |    2                                   
 | 1*x  - 4*x + 5        /                
 |                      |                 
/                       |       1         
-------------------- +  | ------------- dx
         2              |         2       
                        | (-x + 2)  + 1   
                        |                 
                       /                  
In the integral
  /                 
 |                  
 |   1*2*x - 4      
 | -------------- dx
 |    2             
 | 1*x  - 4*x + 5   
 |                  
/                   
--------------------
         2          
do replacement
     2      
u = x  - 4*x
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 5 + u                
 |                      
/             log(5 + u)
----------- = ----------
     2            2     
do backward replacement
  /                                     
 |                                      
 |   1*2*x - 4                          
 | -------------- dx                    
 |    2                                 
 | 1*x  - 4*x + 5                       
 |                        /     2      \
/                      log\5 + x  - 4*x/
-------------------- = -----------------
         2                     2        
In the integral
  /                
 |                 
 |       1         
 | ------------- dx
 |         2       
 | (-x + 2)  + 1   
 |                 
/                  
do replacement
v = 2 - x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv = atan(v)
 |      2             
 | 1 + v              
 |                    
/                     
do backward replacement
  /                               
 |                                
 |       1                        
 | ------------- dx = atan(-2 + x)
 |         2                      
 | (-x + 2)  + 1                  
 |                                
/                                 
Solution is:
       /     2      \               
    log\5 + x  - 4*x/               
C + ----------------- + atan(-2 + x)
            2                       
The answer (Indefinite) [src]
  /                                                      
 |                          /     2      \               
 |    x - 1              log\5 + x  - 4*x/               
 | ------------ dx = C + ----------------- + atan(-2 + x)
 |  2                            2                       
 | x  - 4*x + 5                                          
 |                                                       
/                                                        
$$\int \frac{x - 1}{x^{2} - 4 x + 5}\, dx = C + \frac{\log{\left(x^{2} - 4 x + 5 \right)}}{2} + \operatorname{atan}{\left(x - 2 \right)}$$
The graph
The answer [src]
log(2)   log(5)   pi          
------ - ------ - -- + atan(2)
  2        2      4           
$$- \frac{\log{\left(5 \right)}}{2} - \frac{\pi}{4} + \frac{\log{\left(2 \right)}}{2} + \operatorname{atan}{\left(2 \right)}$$
=
=
log(2)   log(5)   pi          
------ - ------ - -- + atan(2)
  2        2      4           
$$- \frac{\log{\left(5 \right)}}{2} - \frac{\pi}{4} + \frac{\log{\left(2 \right)}}{2} + \operatorname{atan}{\left(2 \right)}$$
Numerical answer [src]
-0.136394811540435
-0.136394811540435
The graph
Integral of (x-1)/(x^2-4x+5) dx

    Use the examples entering the upper and lower limits of integration.