1 / | | x - 1 | ------ dx | 3 | x + 3 | / 0
Integral((x - 1)/(x^3 + 3), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
Don't know the steps in finding this integral.
But the integral is
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ ___ 6 ___\ / ___ 6 ___\ / 5/6 | \/ 3 2*x*\/ 3 | 6 ___ | \/ 3 2*x*\/ 3 | | 3 ___ / 3 ___\ 2/3 / 3 ___\ 3 *atan|- ----- + ---------| \/ 3 *atan|- ----- + ---------| 3 ___ / 2/3 2 3 ___\ 2/3 / 2/3 2 3 ___\ | x - 1 \/ 3 *log\x + \/ 3 / 3 *log\x + \/ 3 / \ 3 3 / \ 3 3 / \/ 3 *log\3 + x - x*\/ 3 / 3 *log\3 + x - x*\/ 3 / | ------ dx = C - -------------------- - ------------------- - ------------------------------ + ------------------------------- + ------------------------------ + ----------------------------- | 3 9 9 9 3 18 18 | x + 3 | /
/ / 2\\ / / 2\\ | 3 | 9*t 81*t || | 3 | 9*t 81*t || - RootSum|243*t - 27*t + 4, t -> t*log|-3 + --- + -----|| + RootSum|243*t - 27*t + 4, t -> t*log|-2 + --- + -----|| \ \ 2 2 // \ \ 2 2 //
=
/ / 2\\ / / 2\\ | 3 | 9*t 81*t || | 3 | 9*t 81*t || - RootSum|243*t - 27*t + 4, t -> t*log|-3 + --- + -----|| + RootSum|243*t - 27*t + 4, t -> t*log|-2 + --- + -----|| \ \ 2 2 // \ \ 2 2 //
-RootSum(243*_t^3 - 27*_t + 4, Lambda(_t, _t*log(-3 + 9*_t/2 + 81*_t^2/2))) + RootSum(243*_t^3 - 27*_t + 4, Lambda(_t, _t*log(-2 + 9*_t/2 + 81*_t^2/2)))
Use the examples entering the upper and lower limits of integration.