Mister Exam

Other calculators

Integral of (x-1)/(sqrt(sin(x))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    x - 1      
 |  ---------- dx
 |    ________   
 |  \/ sin(x)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{x - 1}{\sqrt{\sin{\left(x \right)}}}\, dx$$
Integral((x - 1)/sqrt(sin(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                      /                  /             
 |                      |                  |              
 |   x - 1              |     1            |     x        
 | ---------- dx = C -  | ---------- dx +  | ---------- dx
 |   ________           |   ________       |   ________   
 | \/ sin(x)            | \/ sin(x)        | \/ sin(x)    
 |                      |                  |              
/                      /                  /               
$$\int \frac{x - 1}{\sqrt{\sin{\left(x \right)}}}\, dx = C + \int \frac{x}{\sqrt{\sin{\left(x \right)}}}\, dx - \int \frac{1}{\sqrt{\sin{\left(x \right)}}}\, dx$$
Numerical answer [src]
-1.34312058464763
-1.34312058464763

    Use the examples entering the upper and lower limits of integration.