1 / | | x - 1 | -------- dx | 2 | 5 - 2*x | / 0
Integral((x - 1)/(5 - 2*x^2), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-2, c=5, context=1/(5 - 2*x**2), symbol=x), False), (ArccothRule(a=1, b=-2, c=5, context=1/(5 - 2*x**2), symbol=x), x**2 > 5/2), (ArctanhRule(a=1, b=-2, c=5, context=1/(5 - 2*x**2), symbol=x), x**2 < 5/2)], context=1/(5 - 2*x**2), symbol=x)
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
// / ____\ \ || ____ |x*\/ 10 | | ||\/ 10 *acoth|--------| | / || \ 5 / 2 | | ||---------------------- for x > 5/2| / 2\ | x - 1 || 10 | log\5 - 2*x / | -------- dx = C - |< | - ------------- | 2 || / ____\ | 4 | 5 - 2*x || ____ |x*\/ 10 | | | ||\/ 10 *atanh|--------| | / || \ 5 / 2 | ||---------------------- for x < 5/2| \\ 10 /
/ ____\ / / ____\\ / ____\ / ____\ / ____\ / / ____\\ / ____\ / ____\ |1 \/ 10 | | |\/ 10 || |1 \/ 10 | |\/ 10 | |1 \/ 10 | | | \/ 10 || |1 \/ 10 | | \/ 10 | |- - ------|*|pi*I + log|------|| + |- + ------|*log|------| - |- - ------|*|pi*I + log|-1 + ------|| - |- + ------|*log|1 + ------| \4 20 / \ \ 2 // \4 20 / \ 2 / \4 20 / \ \ 2 // \4 20 / \ 2 /
=
/ ____\ / / ____\\ / ____\ / ____\ / ____\ / / ____\\ / ____\ / ____\ |1 \/ 10 | | |\/ 10 || |1 \/ 10 | |\/ 10 | |1 \/ 10 | | | \/ 10 || |1 \/ 10 | | \/ 10 | |- - ------|*|pi*I + log|------|| + |- + ------|*log|------| - |- - ------|*|pi*I + log|-1 + ------|| - |- + ------|*log|1 + ------| \4 20 / \ \ 2 // \4 20 / \ 2 / \4 20 / \ \ 2 // \4 20 / \ 2 /
(1/4 - sqrt(10)/20)*(pi*i + log(sqrt(10)/2)) + (1/4 + sqrt(10)/20)*log(sqrt(10)/2) - (1/4 - sqrt(10)/20)*(pi*i + log(-1 + sqrt(10)/2)) - (1/4 + sqrt(10)/20)*log(1 + sqrt(10)/2)
Use the examples entering the upper and lower limits of integration.