Mister Exam

Other calculators


(x-1)/(5-2x^2)

Integral of (x-1)/(5-2x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |   x - 1     
 |  -------- dx
 |         2   
 |  5 - 2*x    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x - 1}{5 - 2 x^{2}}\, dx$$
Integral((x - 1)/(5 - 2*x^2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

        PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-2, c=5, context=1/(5 - 2*x**2), symbol=x), False), (ArccothRule(a=1, b=-2, c=5, context=1/(5 - 2*x**2), symbol=x), x**2 > 5/2), (ArctanhRule(a=1, b=-2, c=5, context=1/(5 - 2*x**2), symbol=x), x**2 < 5/2)], context=1/(5 - 2*x**2), symbol=x)

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                     //            /    ____\              \                
                     ||  ____      |x*\/ 10 |              |                
                     ||\/ 10 *acoth|--------|              |                
  /                  ||            \   5    /       2      |                
 |                   ||----------------------  for x  > 5/2|      /       2\
 |  x - 1            ||          10                        |   log\5 - 2*x /
 | -------- dx = C - |<                                    | - -------------
 |        2          ||            /    ____\              |         4      
 | 5 - 2*x           ||  ____      |x*\/ 10 |              |                
 |                   ||\/ 10 *atanh|--------|              |                
/                    ||            \   5    /       2      |                
                     ||----------------------  for x  < 5/2|                
                     \\          10                        /                
$$\int \frac{x - 1}{5 - 2 x^{2}}\, dx = C - \begin{cases} \frac{\sqrt{10} \operatorname{acoth}{\left(\frac{\sqrt{10} x}{5} \right)}}{10} & \text{for}\: x^{2} > \frac{5}{2} \\\frac{\sqrt{10} \operatorname{atanh}{\left(\frac{\sqrt{10} x}{5} \right)}}{10} & \text{for}\: x^{2} < \frac{5}{2} \end{cases} - \frac{\log{\left(5 - 2 x^{2} \right)}}{4}$$
The graph
The answer [src]
/      ____\ /          /  ____\\   /      ____\    /  ____\   /      ____\ /          /       ____\\   /      ____\    /      ____\
|1   \/ 10 | |          |\/ 10 ||   |1   \/ 10 |    |\/ 10 |   |1   \/ 10 | |          |     \/ 10 ||   |1   \/ 10 |    |    \/ 10 |
|- - ------|*|pi*I + log|------|| + |- + ------|*log|------| - |- - ------|*|pi*I + log|-1 + ------|| - |- + ------|*log|1 + ------|
\4     20  / \          \  2   //   \4     20  /    \  2   /   \4     20  / \          \       2   //   \4     20  /    \      2   /
$$- \left(\frac{\sqrt{10}}{20} + \frac{1}{4}\right) \log{\left(1 + \frac{\sqrt{10}}{2} \right)} + \left(\frac{\sqrt{10}}{20} + \frac{1}{4}\right) \log{\left(\frac{\sqrt{10}}{2} \right)} - \left(\frac{1}{4} - \frac{\sqrt{10}}{20}\right) \left(\log{\left(-1 + \frac{\sqrt{10}}{2} \right)} + i \pi\right) + \left(\frac{1}{4} - \frac{\sqrt{10}}{20}\right) \left(\log{\left(\frac{\sqrt{10}}{2} \right)} + i \pi\right)$$
=
=
/      ____\ /          /  ____\\   /      ____\    /  ____\   /      ____\ /          /       ____\\   /      ____\    /      ____\
|1   \/ 10 | |          |\/ 10 ||   |1   \/ 10 |    |\/ 10 |   |1   \/ 10 | |          |     \/ 10 ||   |1   \/ 10 |    |    \/ 10 |
|- - ------|*|pi*I + log|------|| + |- + ------|*log|------| - |- - ------|*|pi*I + log|-1 + ------|| - |- + ------|*log|1 + ------|
\4     20  / \          \  2   //   \4     20  /    \  2   /   \4     20  / \          \       2   //   \4     20  /    \      2   /
$$- \left(\frac{\sqrt{10}}{20} + \frac{1}{4}\right) \log{\left(1 + \frac{\sqrt{10}}{2} \right)} + \left(\frac{\sqrt{10}}{20} + \frac{1}{4}\right) \log{\left(\frac{\sqrt{10}}{2} \right)} - \left(\frac{1}{4} - \frac{\sqrt{10}}{20}\right) \left(\log{\left(-1 + \frac{\sqrt{10}}{2} \right)} + i \pi\right) + \left(\frac{1}{4} - \frac{\sqrt{10}}{20}\right) \left(\log{\left(\frac{\sqrt{10}}{2} \right)} + i \pi\right)$$
(1/4 - sqrt(10)/20)*(pi*i + log(sqrt(10)/2)) + (1/4 + sqrt(10)/20)*log(sqrt(10)/2) - (1/4 - sqrt(10)/20)*(pi*i + log(-1 + sqrt(10)/2)) - (1/4 + sqrt(10)/20)*log(1 + sqrt(10)/2)
Numerical answer [src]
-0.108040810024892
-0.108040810024892
The graph
Integral of (x-1)/(5-2x^2) dx

    Use the examples entering the upper and lower limits of integration.