Mister Exam

Other calculators


(√x-1/cos^2x)

Integral of (√x-1/cos^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /  ___      1   \   
 |  |\/ x  - -------| dx
 |  |           2   |   
 |  \        cos (x)/   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(\sqrt{x} - \frac{1}{\cos^{2}{\left(x \right)}}\right)\, dx$$
Integral(sqrt(x) - 1/cos(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                               3/2         
 | /  ___      1   \          2*x      sin(x)
 | |\/ x  - -------| dx = C + ------ - ------
 | |           2   |            3      cos(x)
 | \        cos (x)/                         
 |                                           
/                                            
$$\int \left(\sqrt{x} - \frac{1}{\cos^{2}{\left(x \right)}}\right)\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} - \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$
The graph
The answer [src]
2   sin(1)
- - ------
3   cos(1)
$$- \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}} + \frac{2}{3}$$
=
=
2   sin(1)
- - ------
3   cos(1)
$$- \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}} + \frac{2}{3}$$
2/3 - sin(1)/cos(1)
Numerical answer [src]
-0.890741057988236
-0.890741057988236
The graph
Integral of (√x-1/cos^2x) dx

    Use the examples entering the upper and lower limits of integration.