1 / | | x | ---------- dx | 2 | x + x + 1 | / 0
Integral(x/(x^2 + x + 1), (x, 0, 1))
/ | | x | 1*---------- dx | 2 | x + x + 1 | /
/ 1*2*x + 1 \
|--------------| / -1 \
| 2 | |-----|
x \1*x + 1*x + 1/ \2*3/4/
---------- = ---------------- + -------------------------
2 2 2
x + x + 1 / ___ ___\
|-2*\/ 3 \/ 3 |
|--------*x - -----| + 1
\ 3 3 / / | | x | 1*---------- dx | 2 = | x + x + 1 | /
/
|
| 1
/ 2* | ------------------------- dx
| | 2
| 1*2*x + 1 | / ___ ___\
| -------------- dx | |-2*\/ 3 \/ 3 |
| 2 | |--------*x - -----| + 1
| 1*x + 1*x + 1 | \ 3 3 /
| |
/ /
-------------------- - ---------------------------------
2 3 /
|
| 1*2*x + 1
| -------------- dx
| 2
| 1*x + 1*x + 1
|
/
--------------------
2 2 u = x + x
/
|
| 1
| ----- du
| 1 + u
|
/ log(1 + u)
----------- = ----------
2 2 /
|
| 1*2*x + 1
| -------------- dx
| 2
| 1*x + 1*x + 1
| / 2\
/ log\1 + x + x /
-------------------- = ---------------
2 2 /
|
| 1
-2* | ------------------------- dx
| 2
| / ___ ___\
| |-2*\/ 3 \/ 3 |
| |--------*x - -----| + 1
| \ 3 3 /
|
/
----------------------------------
3 ___ ___
\/ 3 2*x*\/ 3
v = - ----- - ---------
3 3 /
|
| 1
-2* | ------ dv
| 2
| 1 + v
|
/ -2*atan(v)
--------------- = ----------
3 3 /
|
| 1
-2* | ------------------------- dx
| 2
| / ___ ___\
| |-2*\/ 3 \/ 3 |
| |--------*x - -----| + 1 / ___ ___\
| \ 3 3 / ___ |\/ 3 2*x*\/ 3 |
| -\/ 3 *atan|----- + ---------|
/ \ 3 3 /
---------------------------------- = -------------------------------
3 3 / ___ ___\
___ |\/ 3 2*x*\/ 3 |
/ 2\ \/ 3 *atan|----- + ---------|
log\1 + x + x / \ 3 3 /
C + --------------- - -----------------------------
2 3 / ___ \ / ___ |2*\/ 3 *(1/2 + x)| | / 2\ \/ 3 *atan|-----------------| | x log\1 + x + x / \ 3 / | ---------- dx = C + --------------- - ----------------------------- | 2 2 3 | x + x + 1 | /
___ log(3) pi*\/ 3 ------ - -------- 2 18
=
___ log(3) pi*\/ 3 ------ - -------- 2 18
Use the examples entering the upper and lower limits of integration.