Mister Exam

Other calculators


x/sqrt(2*x+7)

Integral of x/sqrt(2*x+7) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  9               
  /               
 |                
 |       x        
 |  ----------- dx
 |    _________   
 |  \/ 2*x + 7    
 |                
/                 
1                 
$$\int\limits_{1}^{9} \frac{x}{\sqrt{2 x + 7}}\, dx$$
Integral(x/sqrt(2*x + 7), (x, 1, 9))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 
 |                          _________            3/2
 |      x               7*\/ 2*x + 7    (2*x + 7)   
 | ----------- dx = C - ------------- + ------------
 |   _________                2              6      
 | \/ 2*x + 7                                       
 |                                                  
/                                                   
$$\int \frac{x}{\sqrt{2 x + 7}}\, dx = C + \frac{\left(2 x + 7\right)^{\frac{3}{2}}}{6} - \frac{7 \sqrt{2 x + 7}}{2}$$
The graph
The answer [src]
28/3
$$\frac{28}{3}$$
=
=
28/3
$$\frac{28}{3}$$
28/3
Numerical answer [src]
9.33333333333333
9.33333333333333
The graph
Integral of x/sqrt(2*x+7) dx

    Use the examples entering the upper and lower limits of integration.