Mister Exam

Other calculators


x/sqrt(4x+1)

Integral of x/sqrt(4x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       x        
 |  ----------- dx
 |    _________   
 |  \/ 4*x + 1    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{x}{\sqrt{4 x + 1}}\, dx$$
Integral(x/sqrt(4*x + 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                        _________            3/2
 |      x               \/ 4*x + 1    (4*x + 1)   
 | ----------- dx = C - ----------- + ------------
 |   _________               8             24     
 | \/ 4*x + 1                                     
 |                                                
/                                                 
$$\int \frac{x}{\sqrt{4 x + 1}}\, dx = C + \frac{\left(4 x + 1\right)^{\frac{3}{2}}}{24} - \frac{\sqrt{4 x + 1}}{8}$$
The graph
The answer [src]
       ___
1    \/ 5 
-- + -----
12     12 
$$\frac{1}{12} + \frac{\sqrt{5}}{12}$$
=
=
       ___
1    \/ 5 
-- + -----
12     12 
$$\frac{1}{12} + \frac{\sqrt{5}}{12}$$
1/12 + sqrt(5)/12
Numerical answer [src]
0.269672331458316
0.269672331458316
The graph
Integral of x/sqrt(4x+1) dx

    Use the examples entering the upper and lower limits of integration.