Mister Exam

Other calculators


x/(1+sqrt(x))

Integral of x/(1+sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      x       
 |  --------- dx
 |        ___   
 |  1 + \/ x    
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{x}{\sqrt{x} + 1}\, dx$$
Integral(x/(1 + sqrt(x)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        The result is:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                          
 |                                                        3/2
 |     x                       /      ___\       ___   2*x   
 | --------- dx = C - x - 2*log\1 + \/ x / + 2*\/ x  + ------
 |       ___                                             3   
 | 1 + \/ x                                                  
 |                                                           
/                                                            
$$\int \frac{x}{\sqrt{x} + 1}\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} + 2 \sqrt{x} - x - 2 \log{\left(\sqrt{x} + 1 \right)}$$
The graph
The answer [src]
5/3 - 2*log(2)
$$\frac{5}{3} - 2 \log{\left(2 \right)}$$
=
=
5/3 - 2*log(2)
$$\frac{5}{3} - 2 \log{\left(2 \right)}$$
5/3 - 2*log(2)
Numerical answer [src]
0.280372305546776
0.280372305546776
The graph
Integral of x/(1+sqrt(x)) dx

    Use the examples entering the upper and lower limits of integration.