Integral of x/(lnx*ln(lnx)) dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| x | x
| ------------------ dx = C + | ------------------ dx
| log(x)*log(log(x)) | log(x)*log(log(x))
| |
/ /
$$\int \frac{x}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}}\, dx = C + \int \frac{x}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}}\, dx$$
1
/
|
| x
| ------------------ dx
| log(x)*log(log(x))
|
/
0
$$\int\limits_{0}^{1} \frac{x}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}}\, dx$$
=
1
/
|
| x
| ------------------ dx
| log(x)*log(log(x))
|
/
0
$$\int\limits_{0}^{1} \frac{x}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}}\, dx$$
Integral(x/(log(x)*log(log(x))), (x, 0, 1))
(2.52951549208342 + 1.15872870294113j)
(2.52951549208342 + 1.15872870294113j)
Use the examples entering the upper and lower limits of integration.