Mister Exam

Other calculators

Integral of x/(lnx*ln(lnx)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

The answer (Indefinite) [src]
  /                              /                     
 |                              |                      
 |         x                    |         x            
 | ------------------ dx = C +  | ------------------ dx
 | log(x)*log(log(x))           | log(x)*log(log(x))   
 |                              |                      
/                              /                       
$$\int \frac{x}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}}\, dx = C + \int \frac{x}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}}\, dx$$
The answer [src]
  1                      
  /                      
 |                       
 |          x            
 |  ------------------ dx
 |  log(x)*log(log(x))   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{x}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}}\, dx$$
=
=
  1                      
  /                      
 |                       
 |          x            
 |  ------------------ dx
 |  log(x)*log(log(x))   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{x}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}}\, dx$$
Integral(x/(log(x)*log(log(x))), (x, 0, 1))
Numerical answer [src]
(2.52951549208342 + 1.15872870294113j)
(2.52951549208342 + 1.15872870294113j)

    Use the examples entering the upper and lower limits of integration.