Mister Exam

Other calculators

Integral of x^3exp(-2x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          2   
 |   3  -2*x    
 |  x *e      dx
 |              
/               
0               
$$\int\limits_{0}^{1} x^{3} e^{- 2 x^{2}}\, dx$$
Integral(x^3*exp(-2*x^2), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

      ErfRule(a=-2, b=0, c=0, context=exp(-2*x**2), symbol=x)

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                     /                             2                 2\                               
                                     | 3    /    ___\     ___  -2*x      ___  2  -2*x |                               
  /                       ___   ____ |x *erf\x*\/ 2 /   \/ 2 *e        \/ 2 *x *e     |                               
 |                    3*\/ 2 *\/ pi *|--------------- + ------------ + ---------------|                               
 |         2                         |       3                ____             ____   |     ___   ____  3    /    ___\
 |  3  -2*x                          \                   12*\/ pi          6*\/ pi    /   \/ 2 *\/ pi *x *erf\x*\/ 2 /
 | x *e      dx = C - ----------------------------------------------------------------- + ----------------------------
 |                                                    4                                                4              
/                                                                                                                     
$$\int x^{3} e^{- 2 x^{2}}\, dx = C + \frac{\sqrt{2} \sqrt{\pi} x^{3} \operatorname{erf}{\left(\sqrt{2} x \right)}}{4} - \frac{3 \sqrt{2} \sqrt{\pi} \left(\frac{x^{3} \operatorname{erf}{\left(\sqrt{2} x \right)}}{3} + \frac{\sqrt{2} x^{2} e^{- 2 x^{2}}}{6 \sqrt{\pi}} + \frac{\sqrt{2} e^{- 2 x^{2}}}{12 \sqrt{\pi}}\right)}{4}$$
The graph
The answer [src]
       -2
1   3*e  
- - -----
8     8  
$$\frac{1}{8} - \frac{3}{8 e^{2}}$$
=
=
       -2
1   3*e  
- - -----
8     8  
$$\frac{1}{8} - \frac{3}{8 e^{2}}$$
1/8 - 3*exp(-2)/8
Numerical answer [src]
0.0742492687862702
0.0742492687862702

    Use the examples entering the upper and lower limits of integration.