Mister Exam

Other calculators

Integral of xcosx(x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
 --              
 2               
  /              
 |               
 |           x   
 |  x*cos(x)*- dx
 |           2   
 |               
/                
0                
$$\int\limits_{0}^{\frac{\pi}{2}} \frac{x}{2} x \cos{\left(x \right)}\, dx$$
Integral((x*cos(x))*(x/2), (x, 0, pi/2))
The answer (Indefinite) [src]
  /                                                 
 |                                          2       
 |          x                              x *sin(x)
 | x*cos(x)*- dx = C - sin(x) + x*cos(x) + ---------
 |          2                                  2    
 |                                                  
/                                                   
$$\int \frac{x}{2} x \cos{\left(x \right)}\, dx = C + \frac{x^{2} \sin{\left(x \right)}}{2} + x \cos{\left(x \right)} - \sin{\left(x \right)}$$
The graph
The answer [src]
       2
     pi 
-1 + ---
      8 
$$-1 + \frac{\pi^{2}}{8}$$
=
=
       2
     pi 
-1 + ---
      8 
$$-1 + \frac{\pi^{2}}{8}$$
-1 + pi^2/8
Numerical answer [src]
0.23370055013617
0.23370055013617

    Use the examples entering the upper and lower limits of integration.