Mister Exam

Other calculators

Integral of xcosx+x^2sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |  /            2       \   
 |  \x*cos(x) + x *sin(x)/ dx
 |                           
/                            
0                            
01(x2sin(x)+xcos(x))dx\int\limits_{0}^{1} \left(x^{2} \sin{\left(x \right)} + x \cos{\left(x \right)}\right)\, dx
Integral(x*cos(x) + x^2*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=x2u{\left(x \right)} = x^{2} and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

      Then du(x)=2x\operatorname{du}{\left(x \right)} = 2 x.

      To find v(x)v{\left(x \right)}:

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      Now evaluate the sub-integral.

    2. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=2xu{\left(x \right)} = - 2 x and let dv(x)=cos(x)\operatorname{dv}{\left(x \right)} = \cos{\left(x \right)}.

      Then du(x)=2\operatorname{du}{\left(x \right)} = -2.

      To find v(x)v{\left(x \right)}:

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      (2sin(x))dx=2sin(x)dx\int \left(- 2 \sin{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: 2cos(x)2 \cos{\left(x \right)}

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=xu{\left(x \right)} = x and let dv(x)=cos(x)\operatorname{dv}{\left(x \right)} = \cos{\left(x \right)}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      Now evaluate the sub-integral.

    2. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    The result is: x2cos(x)+3xsin(x)+3cos(x)- x^{2} \cos{\left(x \right)} + 3 x \sin{\left(x \right)} + 3 \cos{\left(x \right)}

  2. Add the constant of integration:

    x2cos(x)+3xsin(x)+3cos(x)+constant- x^{2} \cos{\left(x \right)} + 3 x \sin{\left(x \right)} + 3 \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

x2cos(x)+3xsin(x)+3cos(x)+constant- x^{2} \cos{\left(x \right)} + 3 x \sin{\left(x \right)} + 3 \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                 
 |                                                                  
 | /            2       \                      2                    
 | \x*cos(x) + x *sin(x)/ dx = C + 3*cos(x) - x *cos(x) + 3*x*sin(x)
 |                                                                  
/                                                                   
(x2sin(x)+xcos(x))dx=Cx2cos(x)+3xsin(x)+3cos(x)\int \left(x^{2} \sin{\left(x \right)} + x \cos{\left(x \right)}\right)\, dx = C - x^{2} \cos{\left(x \right)} + 3 x \sin{\left(x \right)} + 3 \cos{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
-3 + 2*cos(1) + 3*sin(1)
3+2cos(1)+3sin(1)-3 + 2 \cos{\left(1 \right)} + 3 \sin{\left(1 \right)}
=
=
-3 + 2*cos(1) + 3*sin(1)
3+2cos(1)+3sin(1)-3 + 2 \cos{\left(1 \right)} + 3 \sin{\left(1 \right)}
-3 + 2*cos(1) + 3*sin(1)
Numerical answer [src]
0.605017566159969
0.605017566159969

    Use the examples entering the upper and lower limits of integration.