Integral of xcosx+x^2sinx dx
The solution
Detail solution
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=sin(x).
Then du(x)=2x.
To find v(x):
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−2x and let dv(x)=cos(x).
Then du(x)=−2.
To find v(x):
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin(x))dx=−2∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: 2cos(x)
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=cos(x).
Then du(x)=1.
To find v(x):
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
Now evaluate the sub-integral.
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
The result is: −x2cos(x)+3xsin(x)+3cos(x)
-
Add the constant of integration:
−x2cos(x)+3xsin(x)+3cos(x)+constant
The answer is:
−x2cos(x)+3xsin(x)+3cos(x)+constant
The answer (Indefinite)
[src]
/
|
| / 2 \ 2
| \x*cos(x) + x *sin(x)/ dx = C + 3*cos(x) - x *cos(x) + 3*x*sin(x)
|
/
∫(x2sin(x)+xcos(x))dx=C−x2cos(x)+3xsin(x)+3cos(x)
The graph
−3+2cos(1)+3sin(1)
=
−3+2cos(1)+3sin(1)
Use the examples entering the upper and lower limits of integration.