Mister Exam

Other calculators

Integral of xcosx+x^2sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |  /            2       \   
 |  \x*cos(x) + x *sin(x)/ dx
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \left(x^{2} \sin{\left(x \right)} + x \cos{\left(x \right)}\right)\, dx$$
Integral(x*cos(x) + x^2*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of sine is negative cosine:

      Now evaluate the sub-integral.

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of cosine is sine:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of cosine is sine:

      Now evaluate the sub-integral.

    2. The integral of sine is negative cosine:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                 
 |                                                                  
 | /            2       \                      2                    
 | \x*cos(x) + x *sin(x)/ dx = C + 3*cos(x) - x *cos(x) + 3*x*sin(x)
 |                                                                  
/                                                                   
$$\int \left(x^{2} \sin{\left(x \right)} + x \cos{\left(x \right)}\right)\, dx = C - x^{2} \cos{\left(x \right)} + 3 x \sin{\left(x \right)} + 3 \cos{\left(x \right)}$$
The graph
The answer [src]
-3 + 2*cos(1) + 3*sin(1)
$$-3 + 2 \cos{\left(1 \right)} + 3 \sin{\left(1 \right)}$$
=
=
-3 + 2*cos(1) + 3*sin(1)
$$-3 + 2 \cos{\left(1 \right)} + 3 \sin{\left(1 \right)}$$
-3 + 2*cos(1) + 3*sin(1)
Numerical answer [src]
0.605017566159969
0.605017566159969

    Use the examples entering the upper and lower limits of integration.