Mister Exam

Integral of xcos6xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0              
  /              
 |               
 |  x*cos(6*x) dx
 |               
/                
0                
$$\int\limits_{0}^{0} x \cos{\left(6 x \right)}\, dx$$
Integral(x*cos(6*x), (x, 0, 0))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                     cos(6*x)   x*sin(6*x)
 | x*cos(6*x) dx = C + -------- + ----------
 |                        36          6     
/                                           
$$\int x \cos{\left(6 x \right)}\, dx = C + \frac{x \sin{\left(6 x \right)}}{6} + \frac{\cos{\left(6 x \right)}}{36}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0
The graph
Integral of xcos6xdx dx

    Use the examples entering the upper and lower limits of integration.