Mister Exam

Integral of xcos2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  x*cos(2*x) dx
 |               
/                
0                
01xcos(2x)dx\int\limits_{0}^{1} x \cos{\left(2 x \right)}\, dx
Integral(x*cos(2*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=cos(2x)\operatorname{dv}{\left(x \right)} = \cos{\left(2 x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

      Now substitute uu back in:

      sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    sin(2x)2dx=sin(2x)dx2\int \frac{\sin{\left(2 x \right)}}{2}\, dx = \frac{\int \sin{\left(2 x \right)}\, dx}{2}

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)2du=sin(u)du2\int \frac{\sin{\left(u \right)}}{2}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

        Now substitute uu back in:

        cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

      Method #2

      1. The integral of a constant times a function is the constant times the integral of the function:

        2sin(x)cos(x)dx=2sin(x)cos(x)dx\int 2 \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            udu\int u\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u)du=udu\int \left(- u\right)\, du = - \int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: u22- \frac{u^{2}}{2}

            Now substitute uu back in:

            cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

          Method #2

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            udu\int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            Now substitute uu back in:

            sin2(x)2\frac{\sin^{2}{\left(x \right)}}{2}

        So, the result is: cos2(x)- \cos^{2}{\left(x \right)}

    So, the result is: cos(2x)4- \frac{\cos{\left(2 x \right)}}{4}

  3. Add the constant of integration:

    xsin(2x)2+cos(2x)4+constant\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}+ \mathrm{constant}


The answer is:

xsin(2x)2+cos(2x)4+constant\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                     cos(2*x)   x*sin(2*x)
 | x*cos(2*x) dx = C + -------- + ----------
 |                        4           2     
/                                           
2xsin(2x)+cos(2x)4{{2\,x\,\sin \left(2\,x\right)+\cos \left(2\,x\right)}\over{4}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901.0-1.0
The answer [src]
  1   sin(2)   cos(2)
- - + ------ + ------
  4     2        4   
2sin2+cos2414{{2\,\sin 2+\cos 2}\over{4}}-{{1}\over{4}}
=
=
  1   sin(2)   cos(2)
- - + ------ + ------
  4     2        4   
14+cos(2)4+sin(2)2- \frac{1}{4} + \frac{\cos{\left(2 \right)}}{4} + \frac{\sin{\left(2 \right)}}{2}
Numerical answer [src]
0.100612004276055
0.100612004276055
The graph
Integral of xcos2x dx

    Use the examples entering the upper and lower limits of integration.