Mister Exam

Integral of xacosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  x*acos(x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \operatorname{acos}{\left(x \right)}\, dx$$
Integral(x*acos(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**2, substep=RewriteRule(rewritten=1/2 - cos(2*_theta)/2, substep=AddRule(substeps=[ConstantRule(constant=1/2, context=1/2, symbol=_theta), ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta)], context=1/2 - cos(2*_theta)/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), restriction=(x > -1) & (x < 1), context=x**2/sqrt(1 - x**2), symbol=x)

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                      /               ________                                     
                      |              /      2                                      
                       -1, x < 1)    2        
 |                    \   2            2                                 x *acos(x)
 | x*acos(x) dx = C + ------------------------------------------------ + ----------
 |                                           2                               2     
/                                                                                  
$$\int x \operatorname{acos}{\left(x \right)}\, dx = C + \frac{x^{2} \operatorname{acos}{\left(x \right)}}{2} + \frac{\begin{cases} - \frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2} & \text{for}\: x > -1 \wedge x < 1 \end{cases}}{2}$$
The graph
The answer [src]
pi
--
8 
$$\frac{\pi}{8}$$
=
=
pi
--
8 
$$\frac{\pi}{8}$$
pi/8
Numerical answer [src]
0.392699081698724
0.392699081698724
The graph
Integral of xacosx dx

    Use the examples entering the upper and lower limits of integration.