Mister Exam

Integral of x²(y+2x)dy dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |   2             
 |  x *(y + 2*x) dy
 |                 
/                  
0                  
01x2(2x+y)dy\int\limits_{0}^{1} x^{2} \left(2 x + y\right)\, dy
Integral(x^2*(y + 2*x), (y, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    x2(2x+y)dy=x2(2x+y)dy\int x^{2} \left(2 x + y\right)\, dy = x^{2} \int \left(2 x + y\right)\, dy

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        2xdy=2xy\int 2 x\, dy = 2 x y

      1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

        ydy=y22\int y\, dy = \frac{y^{2}}{2}

      The result is: 2xy+y222 x y + \frac{y^{2}}{2}

    So, the result is: x2(2xy+y22)x^{2} \left(2 x y + \frac{y^{2}}{2}\right)

  2. Now simplify:

    x2y(4x+y)2\frac{x^{2} y \left(4 x + y\right)}{2}

  3. Add the constant of integration:

    x2y(4x+y)2+constant\frac{x^{2} y \left(4 x + y\right)}{2}+ \mathrm{constant}


The answer is:

x2y(4x+y)2+constant\frac{x^{2} y \left(4 x + y\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                          / 2        \
 |  2                     2 |y         |
 | x *(y + 2*x) dy = C + x *|-- + 2*x*y|
 |                          \2         /
/                                       
x2(2x+y)dy=C+x2(2xy+y22)\int x^{2} \left(2 x + y\right)\, dy = C + x^{2} \left(2 x y + \frac{y^{2}}{2}\right)
The answer [src]
 2       
x       3
-- + 2*x 
2        
2x3+x222 x^{3} + \frac{x^{2}}{2}
=
=
 2       
x       3
-- + 2*x 
2        
2x3+x222 x^{3} + \frac{x^{2}}{2}
x^2/2 + 2*x^3

    Use the examples entering the upper and lower limits of integration.