Integral of x²(y+2x)dy dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫x2(2x+y)dy=x2∫(2x+y)dy
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫2xdy=2xy
-
The integral of yn is n+1yn+1 when n=−1:
∫ydy=2y2
The result is: 2xy+2y2
So, the result is: x2(2xy+2y2)
-
Now simplify:
2x2y(4x+y)
-
Add the constant of integration:
2x2y(4x+y)+constant
The answer is:
2x2y(4x+y)+constant
The answer (Indefinite)
[src]
/
| / 2 \
| 2 2 |y |
| x *(y + 2*x) dy = C + x *|-- + 2*x*y|
| \2 /
/
∫x2(2x+y)dy=C+x2(2xy+2y2)
2x3+2x2
=
2x3+2x2
Use the examples entering the upper and lower limits of integration.