Mister Exam

Other calculators


(x²+1)/((x²+1)(x+3))dx

Integral of (x²+1)/((x²+1)(x+3))dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |        2            
 |       x  + 1        
 |  ---------------- dx
 |  / 2    \           
 |  \x  + 1/*(x + 3)   
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{x^{2} + 1}{\left(x + 3\right) \left(x^{2} + 1\right)}\, dx$$
Integral((x^2 + 1)/(((x^2 + 1)*(x + 3))), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of is .

              Now substitute back in:

            So, the result is:

          1. The integral of a constant times a function is the constant times the integral of the function:

              PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)

            So, the result is:

          The result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Don't know the steps in finding this integral.

          But the integral is

        So, the result is:

      The result is:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of is .

              Now substitute back in:

            So, the result is:

          1. The integral of a constant times a function is the constant times the integral of the function:

              PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)

            So, the result is:

          The result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Don't know the steps in finding this integral.

          But the integral is

        So, the result is:

      The result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                                     
 |       2                             
 |      x  + 1                         
 | ---------------- dx = C + log(3 + x)
 | / 2    \                            
 | \x  + 1/*(x + 3)                    
 |                                     
/                                      
$$\int \frac{x^{2} + 1}{\left(x + 3\right) \left(x^{2} + 1\right)}\, dx = C + \log{\left(x + 3 \right)}$$
The graph
The answer [src]
-log(3) + log(4)
$$- \log{\left(3 \right)} + \log{\left(4 \right)}$$
=
=
-log(3) + log(4)
$$- \log{\left(3 \right)} + \log{\left(4 \right)}$$
-log(3) + log(4)
Numerical answer [src]
0.287682072451781
0.287682072451781
The graph
Integral of (x²+1)/((x²+1)(x+3))dx dx

    Use the examples entering the upper and lower limits of integration.