Mister Exam

Integral of x²+4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2              
  /              
 |               
 |  / 2      \   
 |  \x  + 4*x/ dx
 |               
/                
2                
22(x2+4x)dx\int\limits_{2}^{2} \left(x^{2} + 4 x\right)\, dx
Integral(x^2 + 4*x, (x, 2, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      4xdx=4xdx\int 4 x\, dx = 4 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 2x22 x^{2}

    The result is: x33+2x2\frac{x^{3}}{3} + 2 x^{2}

  2. Now simplify:

    x2(x+6)3\frac{x^{2} \left(x + 6\right)}{3}

  3. Add the constant of integration:

    x2(x+6)3+constant\frac{x^{2} \left(x + 6\right)}{3}+ \mathrm{constant}


The answer is:

x2(x+6)3+constant\frac{x^{2} \left(x + 6\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                             3
 | / 2      \             2   x 
 | \x  + 4*x/ dx = C + 2*x  + --
 |                            3 
/                               
(x2+4x)dx=C+x33+2x2\int \left(x^{2} + 4 x\right)\, dx = C + \frac{x^{3}}{3} + 2 x^{2}
The graph
2.00002.01002.00102.00202.00302.00402.00502.00602.00702.00802.00901013
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.