________
/ 2
\/ 4 - x
/
|
| / 2 2\
| 2*\x + y / dy
|
/
0
Integral(2*(x^2 + y^2), (y, 0, sqrt(4 - x^2)))
The integral of a constant times a function is the constant times the integral of the function:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of is when :
The result is:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3 | / 2 2\ 2*y 2 | 2*\x + y / dy = C + ---- + 2*y*x | 3 /
3/2
/ 2\ ________
2*\4 - x / 2 / 2
------------- + 2*x *\/ 4 - x
3
=
3/2
/ 2\ ________
2*\4 - x / 2 / 2
------------- + 2*x *\/ 4 - x
3
2*(4 - x^2)^(3/2)/3 + 2*x^2*sqrt(4 - x^2)
Use the examples entering the upper and lower limits of integration.