Mister Exam

Other calculators

Integral of 2(x^2+y^2) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ________              
   /      2               
 \/  4 - x                
      /                   
     |                    
     |        / 2    2\   
     |      2*\x  + y / dy
     |                    
    /                     
    0                     
$$\int\limits_{0}^{\sqrt{4 - x^{2}}} 2 \left(x^{2} + y^{2}\right)\, dy$$
Integral(2*(x^2 + y^2), (y, 0, sqrt(4 - x^2)))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of is when :

      The result is:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                         3         
 |   / 2    2\          2*y         2
 | 2*\x  + y / dy = C + ---- + 2*y*x 
 |                       3           
/                                    
$$\int 2 \left(x^{2} + y^{2}\right)\, dy = C + 2 x^{2} y + \frac{2 y^{3}}{3}$$
The answer [src]
          3/2                   
  /     2\              ________
2*\4 - x /         2   /      2 
------------- + 2*x *\/  4 - x  
      3                         
$$2 x^{2} \sqrt{4 - x^{2}} + \frac{2 \left(4 - x^{2}\right)^{\frac{3}{2}}}{3}$$
=
=
          3/2                   
  /     2\              ________
2*\4 - x /         2   /      2 
------------- + 2*x *\/  4 - x  
      3                         
$$2 x^{2} \sqrt{4 - x^{2}} + \frac{2 \left(4 - x^{2}\right)^{\frac{3}{2}}}{3}$$
2*(4 - x^2)^(3/2)/3 + 2*x^2*sqrt(4 - x^2)

    Use the examples entering the upper and lower limits of integration.