Mister Exam

Other calculators


(2x^4-x^2+4)

Integral of (2x^4-x^2+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /   4    2    \   
 |  \2*x  - x  + 4/ dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(2 x^{4} - x^{2} + 4\right)\, dx$$
Integral(2*x^4 - x^2 + 4, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                                 3      5
 | /   4    2    \                x    2*x 
 | \2*x  - x  + 4/ dx = C + 4*x - -- + ----
 |                                3     5  
/                                          
$${{2\,x^5}\over{5}}-{{x^3}\over{3}}+4\,x$$
The graph
The answer [src]
61
--
15
$${{61}\over{15}}$$
=
=
61
--
15
$$\frac{61}{15}$$
Numerical answer [src]
4.06666666666667
4.06666666666667
The graph
Integral of (2x^4-x^2+4) dx

    Use the examples entering the upper and lower limits of integration.