Mister Exam

Other calculators

Integral of (2x^2+5x-1)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  /   2          \   
 |  \2*x  + 5*x - 1/ dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \left(\left(2 x^{2} + 5 x\right) - 1\right)\, dx$$
Integral(2*x^2 + 5*x - 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                  3      2
 | /   2          \              2*x    5*x 
 | \2*x  + 5*x - 1/ dx = C - x + ---- + ----
 |                                3      2  
/                                           
$$\int \left(\left(2 x^{2} + 5 x\right) - 1\right)\, dx = C + \frac{2 x^{3}}{3} + \frac{5 x^{2}}{2} - x$$
The graph
The answer [src]
13/6
$$\frac{13}{6}$$
=
=
13/6
$$\frac{13}{6}$$
13/6
Numerical answer [src]
2.16666666666667
2.16666666666667

    Use the examples entering the upper and lower limits of integration.