Mister Exam

Other calculators

Integral of 2x^2-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  /   2    \   
 |  \2*x  - x/ dx
 |               
/                
0                
$$\int\limits_{0}^{1} \left(2 x^{2} - x\right)\, dx$$
Integral(2*x^2 - x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             
 |                      2      3
 | /   2    \          x    2*x 
 | \2*x  - x/ dx = C - -- + ----
 |                     2     3  
/                               
$$\int \left(2 x^{2} - x\right)\, dx = C + \frac{2 x^{3}}{3} - \frac{x^{2}}{2}$$
The graph
The answer [src]
1/6
$$\frac{1}{6}$$
=
=
1/6
$$\frac{1}{6}$$
1/6
Numerical answer [src]
0.166666666666667
0.166666666666667

    Use the examples entering the upper and lower limits of integration.