Mister Exam

Other calculators

Integral of 2x^2-5x-7 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                    
  /                    
 |                     
 |  /   2          \   
 |  \2*x  - 5*x - 7/ dx
 |                     
/                      
0                      
$$\int\limits_{0}^{2} \left(\left(2 x^{2} - 5 x\right) - 7\right)\, dx$$
Integral(2*x^2 - 5*x - 7, (x, 0, 2))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                                    2      3
 | /   2          \                5*x    2*x 
 | \2*x  - 5*x - 7/ dx = C - 7*x - ---- + ----
 |                                  2      3  
/                                             
$$\int \left(\left(2 x^{2} - 5 x\right) - 7\right)\, dx = C + \frac{2 x^{3}}{3} - \frac{5 x^{2}}{2} - 7 x$$
The graph
The answer [src]
-56/3
$$- \frac{56}{3}$$
=
=
-56/3
$$- \frac{56}{3}$$
-56/3
Numerical answer [src]
-18.6666666666667
-18.6666666666667

    Use the examples entering the upper and lower limits of integration.