Integral of 2x^2-5x dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2x2dx=2∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: 32x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−5x)dx=−5∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −25x2
The result is: 32x3−25x2
-
Now simplify:
6x2(4x−15)
-
Add the constant of integration:
6x2(4x−15)+constant
The answer is:
6x2(4x−15)+constant
The answer (Indefinite)
[src]
/
| 2 3
| / 2 \ 5*x 2*x
| \2*x - 5*x/ dx = C - ---- + ----
| 2 3
/
∫(2x2−5x)dx=C+32x3−25x2
The graph
2 3 3 2
/ ____\ / ____\ / ____\ / ____\
| 5 \/ 73 | | 5 \/ 73 | | 5 \/ 73 | | 5 \/ 73 |
5*|- - + ------| 2*|- - - ------| 2*|- - + ------| 5*|- - - ------|
\ 4 4 / \ 4 4 / \ 4 4 / \ 4 4 /
- ----------------- - ----------------- + ----------------- + -----------------
2 3 3 2
−25(−45+473)2+32(−45+473)3−32(−473−45)3+25(−473−45)2
=
2 3 3 2
/ ____\ / ____\ / ____\ / ____\
| 5 \/ 73 | | 5 \/ 73 | | 5 \/ 73 | | 5 \/ 73 |
5*|- - + ------| 2*|- - - ------| 2*|- - + ------| 5*|- - - ------|
\ 4 4 / \ 4 4 / \ 4 4 / \ 4 4 /
- ----------------- - ----------------- + ----------------- + -----------------
2 3 3 2
−25(−45+473)2+32(−45+473)3−32(−473−45)3+25(−473−45)2
-5*(-5/4 + sqrt(73)/4)^2/2 - 2*(-5/4 - sqrt(73)/4)^3/3 + 2*(-5/4 + sqrt(73)/4)^3/3 + 5*(-5/4 - sqrt(73)/4)^2/2
Use the examples entering the upper and lower limits of integration.