Mister Exam

Other calculators

Integral of (2x+x^2)arctgx/2dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /       2\           
 |  \2*x + x /*acot(x)   
 |  ------------------ dx
 |          2            
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{\left(x^{2} + 2 x\right) \operatorname{acot}{\left(x \right)}}{2}\, dx$$
Integral(((2*x + x^2)*acot(x))/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Don't know the steps in finding this integral.

        But the integral is

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Don't know the steps in finding this integral.

          But the integral is

        So, the result is:

      The result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                    
 |                                                                                     
 | /       2\                                   /     2\    2    2            3        
 | \2*x + x /*acot(x)          x   acot(x)   log\1 + x /   x    x *acot(x)   x *acot(x)
 | ------------------ dx = C + - + ------- - ----------- + -- + ---------- + ----------
 |         2                   2      2           12       12       2            6     
 |                                                                                     
/                                                                                      
$$\int \frac{\left(x^{2} + 2 x\right) \operatorname{acot}{\left(x \right)}}{2}\, dx = C + \frac{x^{3} \operatorname{acot}{\left(x \right)}}{6} + \frac{x^{2} \operatorname{acot}{\left(x \right)}}{2} + \frac{x^{2}}{12} + \frac{x}{2} - \frac{\log{\left(x^{2} + 1 \right)}}{12} + \frac{\operatorname{acot}{\left(x \right)}}{2}$$
The graph
The answer [src]
7    log(2)   pi
-- - ------ + --
12     12     24
$$- \frac{\log{\left(2 \right)}}{12} + \frac{\pi}{24} + \frac{7}{12}$$
=
=
7    log(2)   pi
-- - ------ + --
12     12     24
$$- \frac{\log{\left(2 \right)}}{12} + \frac{\pi}{24} + \frac{7}{12}$$
7/12 - log(2)/12 + pi/24
Numerical answer [src]
0.656470762186246
0.656470762186246

    Use the examples entering the upper and lower limits of integration.