Mister Exam

Other calculators


(2x+1)^(2)e^(3x)

Integral of (2x+1)^(2)e^(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |           2  3*x   
 |  (2*x + 1) *e    dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(2 x + 1\right)^{2} e^{3 x}\, dx$$
Integral((2*x + 1)^2*E^(3*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. There are multiple ways to do this integral.

            Method #1

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            Method #2

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of a constant is the constant times the variable of integration:

                So, the result is:

              Now substitute back in:

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      The result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      
 |                             3*x      2  3*x        3*x
 |          2  3*x          5*e      4*x *e      4*x*e   
 | (2*x + 1) *e    dx = C + ------ + --------- + --------
 |                            27         3          9    
/                                                        
$${{4\,\left(9\,x^2-6\,x+2\right)\,e^{3\,x}}\over{27}}+{{4\,\left(3\, x-1\right)\,e^{3\,x}}\over{9}}+{{e^{3\,x}}\over{3}}$$
The graph
The answer [src]
           3
  5    53*e 
- -- + -----
  27     27 
$${{53\,e^3}\over{27}}-{{5}\over{27}}$$
=
=
           3
  5    53*e 
- -- + -----
  27     27 
$$- \frac{5}{27} + \frac{53 e^{3}}{27}$$
Numerical answer [src]
39.2419798862573
39.2419798862573
The graph
Integral of (2x+1)^(2)e^(3x) dx

    Use the examples entering the upper and lower limits of integration.