1 / | | 2*x - 1 | ------------ dx | ___ 2 | \/ 5 - 3*x | / 0
Integral((2*x - 1)/(sqrt(5) - 3*x^2), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-3, c=sqrt(5), context=1/(-3*x**2 + sqrt(5)), symbol=x), False), (ArccothRule(a=1, b=-3, c=sqrt(5), context=1/(-3*x**2 + sqrt(5)), symbol=x), x**2 > sqrt(5)/3), (ArctanhRule(a=1, b=-3, c=sqrt(5), context=1/(-3*x**2 + sqrt(5)), symbol=x), x**2 < sqrt(5)/3)], context=1/(-3*x**2 + sqrt(5)), symbol=x)
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
// / ___ 3/4\ \ || ___ 3/4 |x*\/ 3 *5 | | ||\/ 3 *5 *acoth|------------| ___| / || \ 5 / 2 \/ 5 | | ||------------------------------ for x > -----| / ___ 2\ | 2*x - 1 || 15 3 | log\\/ 5 - 3*x / | ------------ dx = C - |< | - ----------------- | ___ 2 || / ___ 3/4\ | 3 | \/ 5 - 3*x || ___ 3/4 |x*\/ 3 *5 | | | ||\/ 3 *5 *atanh|------------| ___| / || \ 5 / 2 \/ 5 | ||------------------------------ for x < -----| \\ 15 3 /
Use the examples entering the upper and lower limits of integration.