Mister Exam

Other calculators

Integral of (2x-1)/(sqrt5-3x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    2*x - 1      
 |  ------------ dx
 |    ___      2   
 |  \/ 5  - 3*x    
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{2 x - 1}{- 3 x^{2} + \sqrt{5}}\, dx$$
Integral((2*x - 1)/(sqrt(5) - 3*x^2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

        PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-3, c=sqrt(5), context=1/(-3*x**2 + sqrt(5)), symbol=x), False), (ArccothRule(a=1, b=-3, c=sqrt(5), context=1/(-3*x**2 + sqrt(5)), symbol=x), x**2 > sqrt(5)/3), (ArctanhRule(a=1, b=-3, c=sqrt(5), context=1/(-3*x**2 + sqrt(5)), symbol=x), x**2 < sqrt(5)/3)], context=1/(-3*x**2 + sqrt(5)), symbol=x)

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                         //                /    ___  3/4\                \                    
                         ||  ___  3/4      |x*\/ 3 *5   |                |                    
                         ||\/ 3 *5   *acoth|------------|             ___|                    
  /                      ||                \     5      /       2   \/ 5 |                    
 |                       ||------------------------------  for x  > -----|      /  ___      2\
 |   2*x - 1             ||              15                           3  |   log\\/ 5  - 3*x /
 | ------------ dx = C - |<                                              | - -----------------
 |   ___      2          ||                /    ___  3/4\                |           3        
 | \/ 5  - 3*x           ||  ___  3/4      |x*\/ 3 *5   |                |                    
 |                       ||\/ 3 *5   *atanh|------------|             ___|                    
/                        ||                \     5      /       2   \/ 5 |                    
                         ||------------------------------  for x  < -----|                    
                         \\              15                           3  /                    
$$\int \frac{2 x - 1}{- 3 x^{2} + \sqrt{5}}\, dx = C - \begin{cases} \frac{\sqrt{3} \cdot 5^{\frac{3}{4}} \operatorname{acoth}{\left(\frac{\sqrt{3} \cdot 5^{\frac{3}{4}} x}{5} \right)}}{15} & \text{for}\: x^{2} > \frac{\sqrt{5}}{3} \\\frac{\sqrt{3} \cdot 5^{\frac{3}{4}} \operatorname{atanh}{\left(\frac{\sqrt{3} \cdot 5^{\frac{3}{4}} x}{5} \right)}}{15} & \text{for}\: x^{2} < \frac{\sqrt{5}}{3} \end{cases} - \frac{\log{\left(- 3 x^{2} + \sqrt{5} \right)}}{3}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
-0.416861480237022
-0.416861480237022

    Use the examples entering the upper and lower limits of integration.