1 / | | / 3*cos(x)\ | |2*sin(5*x) + --------| dx | \ 2 / | / 0
Integral(2*sin(5*x) + (3*cos(x))/2, (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | / 3*cos(x)\ 2*cos(5*x) 3*sin(x) | |2*sin(5*x) + --------| dx = C - ---------- + -------- | \ 2 / 5 2 | /
2 2*cos(5) 3*sin(1) - - -------- + -------- 5 5 2
=
2 2*cos(5) 3*sin(1) - - -------- + -------- 5 5 2
2/5 - 2*cos(5)/5 + 3*sin(1)/2
Use the examples entering the upper and lower limits of integration.