Integral of (2sin5x+3cosx/2) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(5x)dx=2∫sin(5x)dx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x)
So, the result is: −52cos(5x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫23cos(x)dx=2∫3cos(x)dx
-
The integral of a constant times a function is the constant times the integral of the function:
∫3cos(x)dx=3∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: 3sin(x)
So, the result is: 23sin(x)
The result is: 23sin(x)−52cos(5x)
-
Add the constant of integration:
23sin(x)−52cos(5x)+constant
The answer is:
23sin(x)−52cos(5x)+constant
The answer (Indefinite)
[src]
/
|
| / 3*cos(x)\ 2*cos(5*x) 3*sin(x)
| |2*sin(5*x) + --------| dx = C - ---------- + --------
| \ 2 / 5 2
|
/
∫(2sin(5x)+23cos(x))dx=C+23sin(x)−52cos(5x)
The graph
2 2*cos(5) 3*sin(1)
- - -------- + --------
5 5 2
−52cos(5)+52+23sin(1)
=
2 2*cos(5) 3*sin(1)
- - -------- + --------
5 5 2
−52cos(5)+52+23sin(1)
2/5 - 2*cos(5)/5 + 3*sin(1)/2
Use the examples entering the upper and lower limits of integration.