Mister Exam

Other calculators

Integral of (2sin5x+3cosx/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  /             3*cos(x)\   
 |  |2*sin(5*x) + --------| dx
 |  \                2    /   
 |                            
/                             
0                             
01(2sin(5x)+3cos(x)2)dx\int\limits_{0}^{1} \left(2 \sin{\left(5 x \right)} + \frac{3 \cos{\left(x \right)}}{2}\right)\, dx
Integral(2*sin(5*x) + (3*cos(x))/2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(5x)dx=2sin(5x)dx\int 2 \sin{\left(5 x \right)}\, dx = 2 \int \sin{\left(5 x \right)}\, dx

      1. Let u=5xu = 5 x.

        Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

        sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

        Now substitute uu back in:

        cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

      So, the result is: 2cos(5x)5- \frac{2 \cos{\left(5 x \right)}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      3cos(x)2dx=3cos(x)dx2\int \frac{3 \cos{\left(x \right)}}{2}\, dx = \frac{\int 3 \cos{\left(x \right)}\, dx}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3cos(x)dx=3cos(x)dx\int 3 \cos{\left(x \right)}\, dx = 3 \int \cos{\left(x \right)}\, dx

        1. The integral of cosine is sine:

          cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

        So, the result is: 3sin(x)3 \sin{\left(x \right)}

      So, the result is: 3sin(x)2\frac{3 \sin{\left(x \right)}}{2}

    The result is: 3sin(x)22cos(5x)5\frac{3 \sin{\left(x \right)}}{2} - \frac{2 \cos{\left(5 x \right)}}{5}

  2. Add the constant of integration:

    3sin(x)22cos(5x)5+constant\frac{3 \sin{\left(x \right)}}{2} - \frac{2 \cos{\left(5 x \right)}}{5}+ \mathrm{constant}


The answer is:

3sin(x)22cos(5x)5+constant\frac{3 \sin{\left(x \right)}}{2} - \frac{2 \cos{\left(5 x \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                      
 |                                                       
 | /             3*cos(x)\          2*cos(5*x)   3*sin(x)
 | |2*sin(5*x) + --------| dx = C - ---------- + --------
 | \                2    /              5           2    
 |                                                       
/                                                        
(2sin(5x)+3cos(x)2)dx=C+3sin(x)22cos(5x)5\int \left(2 \sin{\left(5 x \right)} + \frac{3 \cos{\left(x \right)}}{2}\right)\, dx = C + \frac{3 \sin{\left(x \right)}}{2} - \frac{2 \cos{\left(5 x \right)}}{5}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
2   2*cos(5)   3*sin(1)
- - -------- + --------
5      5          2    
2cos(5)5+25+3sin(1)2- \frac{2 \cos{\left(5 \right)}}{5} + \frac{2}{5} + \frac{3 \sin{\left(1 \right)}}{2}
=
=
2   2*cos(5)   3*sin(1)
- - -------- + --------
5      5          2    
2cos(5)5+25+3sin(1)2- \frac{2 \cos{\left(5 \right)}}{5} + \frac{2}{5} + \frac{3 \sin{\left(1 \right)}}{2}
2/5 - 2*cos(5)/5 + 3*sin(1)/2
Numerical answer [src]
1.54874160302655
1.54874160302655

    Use the examples entering the upper and lower limits of integration.