Mister Exam

Other calculators

Integral of (2sin5x+3cosx/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  /             3*cos(x)\   
 |  |2*sin(5*x) + --------| dx
 |  \                2    /   
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \left(2 \sin{\left(5 x \right)} + \frac{3 \cos{\left(x \right)}}{2}\right)\, dx$$
Integral(2*sin(5*x) + (3*cos(x))/2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      
 |                                                       
 | /             3*cos(x)\          2*cos(5*x)   3*sin(x)
 | |2*sin(5*x) + --------| dx = C - ---------- + --------
 | \                2    /              5           2    
 |                                                       
/                                                        
$$\int \left(2 \sin{\left(5 x \right)} + \frac{3 \cos{\left(x \right)}}{2}\right)\, dx = C + \frac{3 \sin{\left(x \right)}}{2} - \frac{2 \cos{\left(5 x \right)}}{5}$$
The graph
The answer [src]
2   2*cos(5)   3*sin(1)
- - -------- + --------
5      5          2    
$$- \frac{2 \cos{\left(5 \right)}}{5} + \frac{2}{5} + \frac{3 \sin{\left(1 \right)}}{2}$$
=
=
2   2*cos(5)   3*sin(1)
- - -------- + --------
5      5          2    
$$- \frac{2 \cos{\left(5 \right)}}{5} + \frac{2}{5} + \frac{3 \sin{\left(1 \right)}}{2}$$
2/5 - 2*cos(5)/5 + 3*sin(1)/2
Numerical answer [src]
1.54874160302655
1.54874160302655

    Use the examples entering the upper and lower limits of integration.