Integral of 2sin(3x)-3x^2 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3x2)dx=−3∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: −x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(3x)dx=2∫sin(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫3sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
So, the result is: −32cos(3x)
The result is: −x3−32cos(3x)
-
Add the constant of integration:
−x3−32cos(3x)+constant
The answer is:
−x3−32cos(3x)+constant
The answer (Indefinite)
[src]
/
|
| / 2\ 3 2*cos(3*x)
| \2*sin(3*x) - 3*x / dx = C - x - ----------
| 3
/
∫(−3x2+2sin(3x))dx=C−x3−32cos(3x)
The graph
22 2*cos(6)
- -- - --------
3 3
−322−32cos(6)
=
22 2*cos(6)
- -- - --------
3 3
−322−32cos(6)
Use the examples entering the upper and lower limits of integration.