Mister Exam

Other calculators

Integral of 2sin(3x)-3x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                       
  /                       
 |                        
 |  /                2\   
 |  \2*sin(3*x) - 3*x / dx
 |                        
/                         
0                         
02(3x2+2sin(3x))dx\int\limits_{0}^{2} \left(- 3 x^{2} + 2 \sin{\left(3 x \right)}\right)\, dx
Integral(2*sin(3*x) - 3*x^2, (x, 0, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3x2)dx=3x2dx\int \left(- 3 x^{2}\right)\, dx = - 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3- x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(3x)dx=2sin(3x)dx\int 2 \sin{\left(3 x \right)}\, dx = 2 \int \sin{\left(3 x \right)}\, dx

      1. Let u=3xu = 3 x.

        Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

        sin(u)3du\int \frac{\sin{\left(u \right)}}{3}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=sin(u)du3\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{3}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)3- \frac{\cos{\left(u \right)}}{3}

        Now substitute uu back in:

        cos(3x)3- \frac{\cos{\left(3 x \right)}}{3}

      So, the result is: 2cos(3x)3- \frac{2 \cos{\left(3 x \right)}}{3}

    The result is: x32cos(3x)3- x^{3} - \frac{2 \cos{\left(3 x \right)}}{3}

  2. Add the constant of integration:

    x32cos(3x)3+constant- x^{3} - \frac{2 \cos{\left(3 x \right)}}{3}+ \mathrm{constant}


The answer is:

x32cos(3x)3+constant- x^{3} - \frac{2 \cos{\left(3 x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                            
 |                                             
 | /                2\           3   2*cos(3*x)
 | \2*sin(3*x) - 3*x / dx = C - x  - ----------
 |                                       3     
/                                              
(3x2+2sin(3x))dx=Cx32cos(3x)3\int \left(- 3 x^{2} + 2 \sin{\left(3 x \right)}\right)\, dx = C - x^{3} - \frac{2 \cos{\left(3 x \right)}}{3}
The graph
0.02.00.20.40.60.81.01.21.41.61.8-2020
The answer [src]
  22   2*cos(6)
- -- - --------
  3       3    
2232cos(6)3- \frac{22}{3} - \frac{2 \cos{\left(6 \right)}}{3}
=
=
  22   2*cos(6)
- -- - --------
  3       3    
2232cos(6)3- \frac{22}{3} - \frac{2 \cos{\left(6 \right)}}{3}
-22/3 - 2*cos(6)/3
Numerical answer [src]
-7.97344685776691
-7.97344685776691

    Use the examples entering the upper and lower limits of integration.