Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x*e^(x*(-2)) Integral of x*e^(x*(-2))
  • Integral of 1/(2+3x^2) Integral of 1/(2+3x^2)
  • Integral of x^2*e^2 Integral of x^2*e^2
  • Integral of x^0.5 Integral of x^0.5
  • Identical expressions

  • two *y*sin((y^ two)/ two)
  • 2 multiply by y multiply by sinus of ((y squared ) divide by 2)
  • two multiply by y multiply by sinus of ((y to the power of two) divide by two)
  • 2*y*sin((y2)/2)
  • 2*y*siny2/2
  • 2*y*sin((y²)/2)
  • 2*y*sin((y to the power of 2)/2)
  • 2ysin((y^2)/2)
  • 2ysin((y2)/2)
  • 2ysiny2/2
  • 2ysiny^2/2
  • 2*y*sin((y^2) divide by 2)

Integral of 2*y*sin((y^2)/2) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ____              
 \/ pi               
    /                
   |                 
   |          / 2\   
   |          |y |   
   |   2*y*sin|--| dy
   |          \2 /   
   |                 
  /                  
  0                  
$$\int\limits_{0}^{\sqrt{\pi}} 2 y \sin{\left(\frac{y^{2}}{2} \right)}\, dy$$
Integral((2*y)*sin(y^2/2), (y, 0, sqrt(pi)))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                               
 |        / 2\               / 2\
 |        |y |               |y |
 | 2*y*sin|--| dy = C - 2*cos|--|
 |        \2 /               \2 /
 |                               
/                                
$$\int 2 y \sin{\left(\frac{y^{2}}{2} \right)}\, dy = C - 2 \cos{\left(\frac{y^{2}}{2} \right)}$$
The graph
The answer [src]
2
$$2$$
=
=
2
$$2$$
2
Numerical answer [src]
2.0
2.0

    Use the examples entering the upper and lower limits of integration.