Mister Exam

Integral of 2*x+5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -8             
  /             
 |              
 |  (2*x + 5) dx
 |              
/               
-15             
158(2x+5)dx\int\limits_{-15}^{-8} \left(2 x + 5\right)\, dx
Integral(2*x + 5, (x, -15, -8))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      5dx=5x\int 5\, dx = 5 x

    The result is: x2+5xx^{2} + 5 x

  2. Now simplify:

    x(x+5)x \left(x + 5\right)

  3. Add the constant of integration:

    x(x+5)+constantx \left(x + 5\right)+ \mathrm{constant}


The answer is:

x(x+5)+constantx \left(x + 5\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                     2      
 | (2*x + 5) dx = C + x  + 5*x
 |                            
/                             
(2x+5)dx=C+x2+5x\int \left(2 x + 5\right)\, dx = C + x^{2} + 5 x
The graph
-15.0-14.5-14.0-13.5-13.0-12.5-12.0-11.5-11.0-10.5-10.0-8.0-9.5-9.0-8.5-200200
The answer [src]
-126
126-126
=
=
-126
126-126
-126
Numerical answer [src]
-126.0
-126.0

    Use the examples entering the upper and lower limits of integration.