Mister Exam

Other calculators

Integral of (2*x-3)*(sinx/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |            sin(x)   
 |  (2*x - 3)*------ dx
 |              2      
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{2} \left(2 x - 3\right)\, dx$$
Integral((2*x - 3)*(sin(x)/2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of sine is negative cosine:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      
 |                                                       
 |           sin(x)          3*cos(x)                    
 | (2*x - 3)*------ dx = C + -------- - x*cos(x) + sin(x)
 |             2                2                        
 |                                                       
/                                                        
$$\int \frac{\sin{\left(x \right)}}{2} \left(2 x - 3\right)\, dx = C - x \cos{\left(x \right)} + \sin{\left(x \right)} + \frac{3 \cos{\left(x \right)}}{2}$$
The graph
The answer [src]
  3   cos(1)         
- - + ------ + sin(1)
  2     2            
$$- \frac{3}{2} + \frac{\cos{\left(1 \right)}}{2} + \sin{\left(1 \right)}$$
=
=
  3   cos(1)         
- - + ------ + sin(1)
  2     2            
$$- \frac{3}{2} + \frac{\cos{\left(1 \right)}}{2} + \sin{\left(1 \right)}$$
-3/2 + cos(1)/2 + sin(1)
Numerical answer [src]
-0.388377862258034
-0.388377862258034

    Use the examples entering the upper and lower limits of integration.