Mister Exam

Other calculators

Integral of (2*sqrt(x)-sqrt(2x)+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  /    ___     _____    \   
 |  \2*\/ x  - \/ 2*x  + 5/ dx
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \left(\left(2 \sqrt{x} - \sqrt{2 x}\right) + 5\right)\, dx$$
Integral(2*sqrt(x) - sqrt(2*x) + 5, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Don't know the steps in finding this integral.

          But the integral is

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                           3/2       ___  3/2
 | /    ___     _____    \                4*x      2*\/ 2 *x   
 | \2*\/ x  - \/ 2*x  + 5/ dx = C + 5*x + ------ - ------------
 |                                          3           3      
/                                                              
$$\int \left(\left(2 \sqrt{x} - \sqrt{2 x}\right) + 5\right)\, dx = C - \frac{2 \sqrt{2} x^{\frac{3}{2}}}{3} + \frac{4 x^{\frac{3}{2}}}{3} + 5 x$$
The graph
The answer [src]
         ___
19   2*\/ 2 
-- - -------
3       3   
$$\frac{19}{3} - \frac{2 \sqrt{2}}{3}$$
=
=
         ___
19   2*\/ 2 
-- - -------
3       3   
$$\frac{19}{3} - \frac{2 \sqrt{2}}{3}$$
19/3 - 2*sqrt(2)/3
Numerical answer [src]
5.39052429175127
5.39052429175127

    Use the examples entering the upper and lower limits of integration.