Mister Exam

Other calculators

Integral of (2-5*x)*i*n*x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  (2 - 5*x)*I*n*x dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} x n i \left(2 - 5 x\right)\, dx$$
Integral((((2 - 5*x)*i)*n)*x, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         3
 |                               2   5*I*n*x 
 | (2 - 5*x)*I*n*x dx = C + I*n*x  - --------
 |                                      3    
/                                            
$$\int x n i \left(2 - 5 x\right)\, dx = C - \frac{5 i n x^{3}}{3} + i n x^{2}$$
The answer [src]
-2*I*n
------
  3   
$$- \frac{2 i n}{3}$$
=
=
-2*I*n
------
  3   
$$- \frac{2 i n}{3}$$
-2*i*n/3

    Use the examples entering the upper and lower limits of integration.