Mister Exam

Other calculators


(2/sin^2x-3e^x)

Integral of (2/sin^2x-3e^x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  /   2         x\   
 |  |------- - 3*e | dx
 |  |   2          |   
 |  \sin (x)       /   
 |                     
/                      
0                      
01(3ex+2sin2(x))dx\int\limits_{0}^{1} \left(- 3 e^{x} + \frac{2}{\sin^{2}{\left(x \right)}}\right)\, dx
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3ex)dx=3exdx\int \left(- 3 e^{x}\right)\, dx = - \int 3 e^{x}\, dx

      1. The integral of a constant times a function is the constant times the integral of the function:

        3exdx=3exdx\int 3 e^{x}\, dx = 3 \int e^{x}\, dx

        1. The integral of the exponential function is itself.

          exdx=ex\int e^{x}\, dx = e^{x}

        So, the result is: 3ex3 e^{x}

      So, the result is: 3ex- 3 e^{x}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin2(x)dx=21sin2(x)dx\int \frac{2}{\sin^{2}{\left(x \right)}}\, dx = 2 \int \frac{1}{\sin^{2}{\left(x \right)}}\, dx

      1. Don't know the steps in finding this integral.

        But the integral is

        cos(x)sin(x)- \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

      So, the result is: 2cos(x)sin(x)- \frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}

    The result is: 3ex2cos(x)sin(x)- 3 e^{x} - \frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}

  2. Now simplify:

    3ex2tan(x)- 3 e^{x} - \frac{2}{\tan{\left(x \right)}}

  3. Add the constant of integration:

    3ex2tan(x)+constant- 3 e^{x} - \frac{2}{\tan{\left(x \right)}}+ \mathrm{constant}


The answer is:

3ex2tan(x)+constant- 3 e^{x} - \frac{2}{\tan{\left(x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 | /   2         x\             x   2*cos(x)
 | |------- - 3*e | dx = C - 3*e  - --------
 | |   2          |                  sin(x) 
 | \sin (x)       /                         
 |                                          
/                                           
2tanx3ex-{{2}\over{\tan x}}-3\,e^{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.90200000000-100000000
The answer [src]
oo
%a{\it \%a}
=
=
oo
\infty
Numerical answer [src]
2.75864735589719e+19
2.75864735589719e+19
The graph
Integral of (2/sin^2x-3e^x) dx

    Use the examples entering the upper and lower limits of integration.