You entered:
What you mean?
Integral of 2000e^(-x^2/20) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2000e20(−1)x2dx=2000∫e20(−1)x2dx
-
Don't know the steps in finding this integral.
But the integral is
5πerf(105x)
So, the result is: 20005πerf(105x)
-
Add the constant of integration:
20005πerf(105x)+constant
The answer is:
20005πerf(105x)+constant
The answer (Indefinite)
[src]
/
|
| 2
| -x
| ---- / ___\
| 20 ___ ____ |x*\/ 5 |
| 2000*E dx = C + 2000*\/ 5 *\/ pi *erf|-------|
| \ 10 /
/
∫2000e20(−1)x2dx=C+20005πerf(105x)
The graph
/ ___\
___ ____ |4*\/ 5 |
2000*\/ 5 *\/ pi *erf|-------|
\ 5 /
20005πerf(545)
=
/ ___\
___ ____ |4*\/ 5 |
2000*\/ 5 *\/ pi *erf|-------|
\ 5 /
20005πerf(545)
2000*sqrt(5)*sqrt(pi)*erf(4*sqrt(5)/5)
Use the examples entering the upper and lower limits of integration.