Mister Exam

Other calculators

Integral of 24-2y-3z dz

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2*y                   
 8 - ---                   
      3                    
    /                      
   |                       
   |    (24 - 2*y - 3*z) dz
   |                       
  /                        
  0                        
$$\int\limits_{0}^{8 - \frac{2 y}{3}} \left(- 3 z + \left(24 - 2 y\right)\right)\, dz$$
Integral(24 - 2*y - 3*z, (z, 0, 8 - 2*y/3))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             2               
 |                           3*z                
 | (24 - 2*y - 3*z) dz = C - ---- + z*(24 - 2*y)
 |                            2                 
/                                               
$$\int \left(- 3 z + \left(24 - 2 y\right)\right)\, dz = C - \frac{3 z^{2}}{2} + z \left(24 - 2 y\right)$$
The answer [src]
             2                       
    /    2*y\                        
  3*|8 - ---|                        
    \     3 /    /    2*y\           
- ------------ + |8 - ---|*(24 - 2*y)
       2         \     3 /           
$$- \frac{3 \left(8 - \frac{2 y}{3}\right)^{2}}{2} + \left(8 - \frac{2 y}{3}\right) \left(24 - 2 y\right)$$
=
=
             2                       
    /    2*y\                        
  3*|8 - ---|                        
    \     3 /    /    2*y\           
- ------------ + |8 - ---|*(24 - 2*y)
       2         \     3 /           
$$- \frac{3 \left(8 - \frac{2 y}{3}\right)^{2}}{2} + \left(8 - \frac{2 y}{3}\right) \left(24 - 2 y\right)$$
-3*(8 - 2*y/3)^2/2 + (8 - 2*y/3)*(24 - 2*y)

    Use the examples entering the upper and lower limits of integration.