Mister Exam

Other calculators

Integral of 12-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  /      2\   
 |  \12 - x / dx
 |              
/               
0               
$$\int\limits_{0}^{1} \left(12 - x^{2}\right)\, dx$$
Integral(12 - x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                            3
 | /      2\                 x 
 | \12 - x / dx = C + 12*x - --
 |                           3 
/                              
$$\int \left(12 - x^{2}\right)\, dx = C - \frac{x^{3}}{3} + 12 x$$
The graph
The answer [src]
35/3
$$\frac{35}{3}$$
=
=
35/3
$$\frac{35}{3}$$
35/3
Numerical answer [src]
11.6666666666667
11.6666666666667

    Use the examples entering the upper and lower limits of integration.