Mister Exam

Other calculators

Integral of 12/(sqrt(3x-2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       12       
 |  ----------- dx
 |    _________   
 |  \/ 3*x - 2    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{12}{\sqrt{3 x - 2}}\, dx$$
Integral(12/sqrt(3*x - 2), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of a constant is the constant times the variable of integration:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                   
 |      12                  _________
 | ----------- dx = C + 8*\/ 3*x - 2 
 |   _________                       
 | \/ 3*x - 2                        
 |                                   
/                                    
$$\int \frac{12}{\sqrt{3 x - 2}}\, dx = C + 8 \sqrt{3 x - 2}$$
The graph
The answer [src]
          ___
8 - 8*I*\/ 2 
$$8 - 8 \sqrt{2} i$$
=
=
          ___
8 - 8*I*\/ 2 
$$8 - 8 \sqrt{2} i$$
8 - 8*i*sqrt(2)
Numerical answer [src]
(6.94034900092999 - 18.1536245172787j)
(6.94034900092999 - 18.1536245172787j)

    Use the examples entering the upper and lower limits of integration.