Mister Exam

Other calculators

Integral of (3x+2)/(x-3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  3*x + 2   
 |  ------- dx
 |   x - 3    
 |            
/             
0             
013x+2x3dx\int\limits_{0}^{1} \frac{3 x + 2}{x - 3}\, dx
Integral((3*x + 2)/(x - 3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute dudu:

      u+2u9du\int \frac{u + 2}{u - 9}\, du

      1. Let u=u9u = u - 9.

        Then let du=dudu = du and substitute dudu:

        u+11udu\int \frac{u + 11}{u}\, du

        1. Rewrite the integrand:

          u+11u=1+11u\frac{u + 11}{u} = 1 + \frac{11}{u}

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          1. The integral of a constant times a function is the constant times the integral of the function:

            11udu=111udu\int \frac{11}{u}\, du = 11 \int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: 11log(u)11 \log{\left(u \right)}

          The result is: u+11log(u)u + 11 \log{\left(u \right)}

        Now substitute uu back in:

        u+11log(u9)9u + 11 \log{\left(u - 9 \right)} - 9

      Now substitute uu back in:

      3x+11log(3x9)93 x + 11 \log{\left(3 x - 9 \right)} - 9

    Method #2

    1. Rewrite the integrand:

      3x+2x3=3+11x3\frac{3 x + 2}{x - 3} = 3 + \frac{11}{x - 3}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        3dx=3x\int 3\, dx = 3 x

      1. The integral of a constant times a function is the constant times the integral of the function:

        11x3dx=111x3dx\int \frac{11}{x - 3}\, dx = 11 \int \frac{1}{x - 3}\, dx

        1. Let u=x3u = x - 3.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x3)\log{\left(x - 3 \right)}

        So, the result is: 11log(x3)11 \log{\left(x - 3 \right)}

      The result is: 3x+11log(x3)3 x + 11 \log{\left(x - 3 \right)}

    Method #3

    1. Rewrite the integrand:

      3x+2x3=3xx3+2x3\frac{3 x + 2}{x - 3} = \frac{3 x}{x - 3} + \frac{2}{x - 3}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        3xx3dx=3xx3dx\int \frac{3 x}{x - 3}\, dx = 3 \int \frac{x}{x - 3}\, dx

        1. Rewrite the integrand:

          xx3=1+3x3\frac{x}{x - 3} = 1 + \frac{3}{x - 3}

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            1dx=x\int 1\, dx = x

          1. The integral of a constant times a function is the constant times the integral of the function:

            3x3dx=31x3dx\int \frac{3}{x - 3}\, dx = 3 \int \frac{1}{x - 3}\, dx

            1. Let u=x3u = x - 3.

              Then let du=dxdu = dx and substitute dudu:

              1udu\int \frac{1}{u}\, du

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              Now substitute uu back in:

              log(x3)\log{\left(x - 3 \right)}

            So, the result is: 3log(x3)3 \log{\left(x - 3 \right)}

          The result is: x+3log(x3)x + 3 \log{\left(x - 3 \right)}

        So, the result is: 3x+9log(x3)3 x + 9 \log{\left(x - 3 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2x3dx=21x3dx\int \frac{2}{x - 3}\, dx = 2 \int \frac{1}{x - 3}\, dx

        1. Let u=x3u = x - 3.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x3)\log{\left(x - 3 \right)}

        So, the result is: 2log(x3)2 \log{\left(x - 3 \right)}

      The result is: 3x+9log(x3)+2log(x3)3 x + 9 \log{\left(x - 3 \right)} + 2 \log{\left(x - 3 \right)}

  2. Add the constant of integration:

    3x+11log(3x9)9+constant3 x + 11 \log{\left(3 x - 9 \right)} - 9+ \mathrm{constant}


The answer is:

3x+11log(3x9)9+constant3 x + 11 \log{\left(3 x - 9 \right)} - 9+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                            
 |                                             
 | 3*x + 2                                     
 | ------- dx = -9 + C + 3*x + 11*log(-9 + 3*x)
 |  x - 3                                      
 |                                             
/                                              
3x+2x3dx=C+3x+11log(3x9)9\int \frac{3 x + 2}{x - 3}\, dx = C + 3 x + 11 \log{\left(3 x - 9 \right)} - 9
The graph
0.001.000.100.200.300.400.500.600.700.800.900-4
The answer [src]
3 - 11*log(3) + 11*log(2)
11log(3)+3+11log(2)- 11 \log{\left(3 \right)} + 3 + 11 \log{\left(2 \right)}
=
=
3 - 11*log(3) + 11*log(2)
11log(3)+3+11log(2)- 11 \log{\left(3 \right)} + 3 + 11 \log{\left(2 \right)}
3 - 11*log(3) + 11*log(2)
Numerical answer [src]
-1.46011618918981
-1.46011618918981

    Use the examples entering the upper and lower limits of integration.