Mister Exam

Other calculators

Integral of 3x^3-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  /   3    \   
 |  \3*x  - x/ dx
 |               
/                
0                
01(3x3x)dx\int\limits_{0}^{1} \left(3 x^{3} - x\right)\, dx
Integral(3*x^3 - x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x3dx=3x3dx\int 3 x^{3}\, dx = 3 \int x^{3}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

      So, the result is: 3x44\frac{3 x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    The result is: 3x44x22\frac{3 x^{4}}{4} - \frac{x^{2}}{2}

  2. Now simplify:

    x2(3x22)4\frac{x^{2} \left(3 x^{2} - 2\right)}{4}

  3. Add the constant of integration:

    x2(3x22)4+constant\frac{x^{2} \left(3 x^{2} - 2\right)}{4}+ \mathrm{constant}


The answer is:

x2(3x22)4+constant\frac{x^{2} \left(3 x^{2} - 2\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                      2      4
 | /   3    \          x    3*x 
 | \3*x  - x/ dx = C - -- + ----
 |                     2     4  
/                               
(3x3x)dx=C+3x44x22\int \left(3 x^{3} - x\right)\, dx = C + \frac{3 x^{4}}{4} - \frac{x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.902.5-2.5
The answer [src]
1/4
14\frac{1}{4}
=
=
1/4
14\frac{1}{4}
1/4
Numerical answer [src]
0.25
0.25

    Use the examples entering the upper and lower limits of integration.