Mister Exam

Other calculators

Integral of 3^(cos(4x))sin(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |   cos(4*x)            
 |  3        *sin(4*x) dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} 3^{\cos{\left(4 x \right)}} \sin{\left(4 x \right)}\, dx$$
Integral(3^cos(4*x)*sin(4*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of an exponential function is itself divided by the natural logarithm of the base.

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of an exponential function is itself divided by the natural logarithm of the base.

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                              cos(4*x)
 |  cos(4*x)                   3        
 | 3        *sin(4*x) dx = C - ---------
 |                              4*log(3)
/                                       
$$\int 3^{\cos{\left(4 x \right)}} \sin{\left(4 x \right)}\, dx = - \frac{3^{\cos{\left(4 x \right)}}}{4 \log{\left(3 \right)}} + C$$
The graph
The answer [src]
            cos(4) 
   3       3       
-------- - --------
4*log(3)   4*log(3)
$$- \frac{1}{4 \cdot 3^{- \cos{\left(4 \right)}} \log{\left(3 \right)}} + \frac{3}{4 \log{\left(3 \right)}}$$
=
=
            cos(4) 
   3       3       
-------- - --------
4*log(3)   4*log(3)
$$- \frac{1}{4 \cdot 3^{- \cos{\left(4 \right)}} \log{\left(3 \right)}} + \frac{3}{4 \log{\left(3 \right)}}$$
3/(4*log(3)) - 3^cos(4)/(4*log(3))
Numerical answer [src]
0.571703618146759
0.571703618146759

    Use the examples entering the upper and lower limits of integration.