Mister Exam

Other calculators

Integral of 3^(6x)*cos(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |   6*x            
 |  3   *cos(5*x) dx
 |                  
/                   
-oo                 
$$\int\limits_{-\infty}^{\infty} 3^{6 x} \cos{\left(5 x \right)}\, dx$$
Integral(3^(6*x)*cos(5*x), (x, -oo, oo))
The answer (Indefinite) [src]
  /                                                               
 |                           6*x               6*x                
 |  6*x                   5*3   *sin(5*x)   6*3   *cos(5*x)*log(3)
 | 3   *cos(5*x) dx = C + --------------- + ----------------------
 |                                   2                    2       
/                         25 + 36*log (3)      25 + 36*log (3)    
$$\int 3^{6 x} \cos{\left(5 x \right)}\, dx = \frac{5 \cdot 3^{6 x} \sin{\left(5 x \right)}}{25 + 36 \log{\left(3 \right)}^{2}} + \frac{6 \cdot 3^{6 x} \log{\left(3 \right)} \cos{\left(5 x \right)}}{25 + 36 \log{\left(3 \right)}^{2}} + C$$
The graph
The answer [src]
oo*(<-5, 5> + <-6, 6>*log(3))
$$\infty \left(\left\langle -5, 5\right\rangle + \left\langle -6, 6\right\rangle \log{\left(3 \right)}\right)$$
=
=
oo*(<-5, 5> + <-6, 6>*log(3))
$$\infty \left(\left\langle -5, 5\right\rangle + \left\langle -6, 6\right\rangle \log{\left(3 \right)}\right)$$
oo*(AccumBounds(-5, 5) + AccumBounds(-6, 6)*log(3))
Numerical answer [src]
5.21535867350983e+28564091645763626604
5.21535867350983e+28564091645763626604

    Use the examples entering the upper and lower limits of integration.